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Course Outline

• Solution of Classical Field Equations Using Finite Difference Techniques (Matt)

1. Solving the wave equation using finite difference techniques
2. 3 + 1 approach to the Einstein equations
3. Dynamical spherically symmetric spacetimes
4. Spherically symmetric Einstein-Klein-Gordon Evolution
5. Introduction to Black Hole Critical Phenomena

• General Relativistic Hydrodynamics Using Gudonov/HRSC Schemes (Luis)

1. Mathematical structure; Linearly degenerate vs truly nonlinear eqns
2. Burgers eqn; Godunov Methods & the Riemann problem
3. 3 + 1 Approach to GRHydrodynamics
4. Stationary solutions, TOV stars & perturbations
5. Magnetohydrodynamics & miscellaneous topics

• Topics in Numerical Relativity (Frans)

1. Gravitational waves overview (nature in GR & sources)
2. Newman Penrose formalism, Teukolsky equation
3. BSSN/generalized harmonic evolution
4. Adaptive mesh refinement (AMR)/parallel computation
5. Miscellaneous topics: excision, apparent horizon finders, GW extraction
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Week 1

Solution of Classical Field Equations Using Finite
Difference Techniques
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Problems, New York: Interscience (1967)

• H.-O. Kreiss and J. Oliger, Methods for the Approximate Solution of Time
Dependent Problems, GARP Publications Series No. 10, (1973)

• Gustatsson, B., H. Kreiss and J. Oliger, Time-Dependent Problems and
Difference Methods, New York: Wiley (1995)
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Solution of Classical Field Equations Using Finite
Difference Techniques

1. Solving the wave equation using finite difference
techniques
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Preliminaries

• Classical field equations ≡ time dependent partial differential equations (PDEs)

• Can divide time-dependent PDEs into two broad classes:

1. Initial-value Problems (Cauchy Problems), spatial domain has no
boundaries (either infinite or “closed”—e.g. “periodic boundary conditions”)

2. Initial-Boundary-Value Problems, spatial domain finite, need to specify
boundary conditions

• Note: Even if physical problem is really of type 1, finite computational
resources −→ finite spatial domain −→ approximate as type 2; will hereafter
loosely refer to either type as an IVP.

• Working Definition: Initial Value Problem

• State of physical system arbitrarily (usually) specified at some initial time
t = t0.

• Solution exists for t ≥ t0; uniquely determined by equations of motion
(EOM) and boundary conditions (BCs).
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Preliminaries

• Approximate solution of initial value problems using any numerical method,
including finite differencing, will always involve three key steps

1. Complete mathematical specification of system of PDEs, including boundary
conditions and initial conditions

2. Discretization of the system: replacement of continuous domain by discrete
domain, and approximation of differential equations by algebraic equations
for discrete unknowns

3. Solution of discrete algebraic equations

• Will assume that the set of PDEs has a unique solution for given initial
conditions and boundary conditions, and that the solution does not “blow up”
in time, unless such blow up is expected from the physics

• Whenever this last condition holds for an initial value problem, we say that the
problem is well posed

• Note that this is a non-trivial issue in general relativity, since there are in
practice many distinct forms the PDEs can take for a given physical scenario
(in principle infinitely many), and not all will be well-posed in general
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Why Finite Differencing?

• There are several general approaches to the numerical solution of time
dependent PDEs, including

1. Finite differences
2. Finite volume
3. Finite elements
4. Spectral

• Finite difference (FD) methods are particularly appropriate when the solution is
expected to be smooth (infinitely differentiable) given that the initial data is
smooth

• This is the case for many classical field theories including those for a scalar
(linear/nonlinear Klein Gordon), vector (electromagnetism [Maxwell]), rank-2
symmetric tensor (general relativity [Einstein])

• In cases where solutions do not remain smooth, even if the initial data is—as
happens in compressible hydrodynamics, for example, where shocks can
form—the finite volume approach is the method of choice (next week)
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Why Finite Differencing?

• Accessibility: Requires a minimum of mathematical background: if you’re
mathematically mature enough to understand the nature of the PDEs you need
to solve, you’re mathematically mature enough to understand finite differencing

• Flexibility: Technique can be used for essentially any system of PDEs that has
smooth solutions, irrespective of

• Number of dependent variables (unknown functions)

• Number of independent variables (a.k.a. “dimensionality” of the system:
nomenclature “1-D” means dependence on one spatial dimension plus time,
“2-D”, “3-D” similarly mean dependence on two/three dimensions, plus
time, respectively)

• Nonlinearity

• Form of equations: technique does not require that the system of equations
has any particular/special form (contrast with finite volume methods where
one generally wants to cast the equations in so-called conservation-law form)
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Why Finite Differencing?

• Error analysis:

• Mathematically rigorous: Quite difficult

• Practical/empirical: Extremely straightforward—basic principle is to compute
multiple solutions using same initial data and problem parameters, but
differing fundamental discretization scales. Comparison of solutions provides
direct estimate of error in solutions

• Adaptivity: Can combine basic method with changes in

• Local scale of discretization

• Order of approximation

in order to maximize increase in solution accuracy as a function of
computational work invested (e.g. adaptive mesh refinement, week 3)

• Parallelization: Due to “locality of influence” in finite difference schemes, it is
relatively easy to write FD codes than run efficiently on large distributed
memory computer clusters having 1000s or cores (these days 10,000s or even
100,000s!)
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Why Finite Differencing?

• Sufficiency: FD techniques are often sufficient to generate solutions of
acceptable accuracy, again assuming that solutions are smooth

• Will usually not be the most efficient and/or accurate among possible
approaches, but when one is looking for a solution for the first time (science
vs engineering/technology), such considerations are often not very important

• Now proceed to illustration of finite difference technique through the solution
of the simple and familiar 1-D wave equation
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1. Mathematical Formulation
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The 1-D Wave Equation

• Consider the following initial value (Cauchy) problem for the scalar function
φ(t, x)

φtt = c2φxx , −∞ ≤ x ≤ ∞ , t ≥ 0 (1)

φ(0, x) = φ0(x) (2)

φt(0, x) = Π0(x) (3)

where c is a positive constant, we have adopted the subscript notation for
partial differentiation, e.g. φtt ≡ ∂2φ/∂t2, and we wish to determine φ(t, x) in
the solution domain from the initial conditions (2–3) and the governing
equation (1)

• Note the following:

• Since the spatial domain is unbounded, there are no boundary conditions

• Since the equation is second order in time, two functions-worth of initial data
must be specified: the initial scalar field profile, φ0(x), and the initial time
derivative, Π0(x)
• This system is well posed, and if the initial conditions φ0(x) and Π0(x) are

smooth—which we will hereafter assume—so is the complete solution φ(t, x)
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The 1-D Wave Equation

• Eqn. (1) is a hyperbolic PDE, and as such, its solutions generically describe the
propagation of disturbances at some finite speed(s), which in this case is c

• Without loss of generality, we can assume that we have adopted units in which
this speed satisfies c = 1. Our problem then becomes

φtt = φxx , −∞ ≤ x ≤ ∞ , t ≥ 0 (4)

φ(0, x) = φ0(x) (5)

φt(0, x) = Π0(x) (6)

• In the study of the solutions of hyperbolic PDEs, using either closed form
(preferred to “analytic”) or numerical approaches, the concept of characteristic
is crucial

• Loosely, in a spacetime diagram, characteristics are the lines/surfaces along
which information/signals propagate(s).
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The 1-D Wave Equation

t

: "left−directed" characteristics,      x + t  =  constant  ,   l(x + t) 

: "right−directed" characteristics,    x − t  =  constant  ,  r(x − t)  

x

• General solution of (4) is a superposition of an arbitrary left-moving profile
(v = −c = −1), and an arbitrary right-moving profile (v = +c = +1); i.e.

φ(t, x) = `(x+ t) + r(x− t) (7)

where

` : constant along “left-directed” characteristics

r : constant along “right-directed” characteristics
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The 1-D Wave Equation

• Observation provides alternative way of specifying initial values—often
convenient in practice

• Rather than specifying u(x, 0) and ut(x, 0) directly, specify initial left-moving
and right-moving parts of the solution, `(x) and r(x)

• Specifically, set

φ(x, 0) = `(x) + r(x) (8)

φt(x, 0) = `′(x)− r′(x) ≡ d`

dx
(x)− dr

dx
(x) (9)

• For illustrative purposes will frequently take profile functions φ0(x), `(x), r(x)
to be “gaussians”, e.g.

φ0(x) = A exp
[
− ((x− x0) /δ)2

]
(10)

where A, x0 and δ are viewed as adjustable parameters that control the overall
size/height of the profile (A), its centre point (x0) and its effective width (δ)
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2. Discretization
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Deriving Finite Difference Formulae

• Essence of finite-difference approximation of a PDE:

• Replacement of the continuum by a discrete lattice of grid points

• Replacement of derivatives/differential operators by finite-difference
expressions

• Finite-difference expressions (finite-difference quotients) approximate the
derivatives of functions at grid points, using the grid values themselves. All
operators and expressions needed here can easily be worked out using Taylor
series techniques.

• Example: Consider task of approximating the first derivative ux(x) of a
function u(x), given a discrete set of values uj ≡ u(jh)

17



Deriving Finite Difference Formulae

∆x

j − 1 j j + 1

x  = x   +  j ∆x  = x   +  j h 
j 0 0

• One-dimensional, uniform finite difference mesh.

• Note that the spacing, ∆x = h, between adjacent mesh points is constant.

• Will tacitly assume that the origin, x0, of coordinate system is x0 = 0.
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Deriving Finite Difference Formulae

• Given the three values u(xj − h), u(xj) and u(xj + h), denoted uj−1, uj, and
uj+1 respectively, can compute an O(h2) approximation to ux(xj) ≡ (ux)j as
follows

• Taylor expanding, have

uj−1 = uj − h(ux)j +
1
2
h2(uxx)j −

1
6
h3(uxxx)j +

1
24
h4(uxxxx)j +O(h5)

uj = uj

uj+1 = uj + h(ux)j +
1
2
h2(uxx)j +

1
6
h3(uxxx)j +

1
24
h4(uxxxx)j +O(h5)

• Now seek a linear combination of uj−1, uj, and uj+1 which yields (ux)j to
O(h2) accuracy, i.e. we seek c−, c0 and c+ such that

c− uj−1 + c0 uj + c+ uj+1 = (ux)j +O(h2)
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Deriving Finite Difference Formulae

• Results in a system of three linear equations for uj−1, uj, and uj+1:

c− + c0 + c+ = 0

−hc− + hc+ = 1
1
2
h2c− +

1
2
h2c+ = 0

which has the solution

c− = − 1
2h

c0 = 0

c+ = +
1

2h

• Thus, O(h2) FDA (finite difference approximation) for the first derivative is

u(x+ h)− u(x− h)
2h

= ux(x) +O(h2) (11)
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Deriving Finite Difference Formulae

• May not be obvious a priori, that the truncation error of approximation is O(h2)

• Naive consideration of the number of terms in the Taylor series expansion
which can be eliminated using 2 values (namely u(x+ h) and u(x− h))
suggests that the error might be O(h).

• Fact that the O(h) term “drops out” a consequence of the symmetry, or
centering of the stencil: common theme in such FDA, called centred difference
approximations

• Using same technique, can easily generate O(h2) expression for the second
derivative, which uses the same difference stencil as the above approximation
for the first derivative.

u(x+ h)− 2u(x) + u(x− h)
h2

= uxx(x) +O(h2) (12)

• Exercise: Compute the precise form of the O(h2) terms in expressions (11)
and (12).
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Sample FDA for the 1-D Wave Equation

• Let us consider the 1-D wave equation again, but this time on the finite spatial
domain, 0 ≤ x ≤ 1, where we will prescribe fixed (Dirichlet) boundary
conditions

• Then we wish to solve

φtt = φxx (c = 1) 0 ≤ x ≤ 1, t ≥ 0 (13)

φ(0, x) = φ0(x)

φt(0, x) = Π0(x)

φ(t, 0) = φ(t, 1) = 0 (14)

• We will again require that the initial data functions, φ0(x) and Π0(x) be
smooth

• Moreover, in order to ensure a smooth solution everywhere, the initial values
must be compatible with the boundary conditions, i.e.

φ0(0) = φ0(1) = Π0(0) = Π0(1) = 0 (15)
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Sample FDA for the 1-D Wave Equation

• As always, we begin the discretization process by replacing the continuum
solution domain with a finite difference mesh, whose typical element
(point/event) we will denote by (xj, t

n):

t
n ≡ n4t , n = 0, 1, 2, · · ·
xj ≡ (j − 1) 4x , j = 1, 2, · · · J

φ
n
j ≡ φ(n4t , (j − 1)4x )

4x = (J − 1)−1

4t = λ4x λ ≡ “Courant number”

• We note in passing that the quantity λ defined above is often called the
Courant number or Courant factor, after the great 20th century mathematician
Richard Courant who was a pioneer in the study of finite difference solutions of
time dependent PDEs (in particular, in the use of FD techniques to establish
existence and uniqueness of such PDEs) )
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Uniform Grid for 1-D Wave Equation

j − 1 j j + 1

∆x

∆t

t

x

• When solving wave equations using FDAs, typically keep λ constant when 4x
varied.

• FDA will always be characterized by the single discretization scale, h.

4x ≡ h

4t ≡ λh
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Stencil for “Standard” O(h2) Approximation of 1-D
Wave Equation

n

n + 1

n − 1

j − 1 j j + 1
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FDA for 1-D Wave Equation

• Discretized Interior equation

(4t )−2
(
φ

n+1
j − 2φn

j + φ
n−1
j

)
= (φtt)

n
j +

1
12
4t 2 (φtttt)

n
j +O(4t 4)

= (φtt)
n
j +O(h2)

(4x )−2
(
φ

n
j+1 − 2φn

j + φ
n
j−1

)
= (φxx) n

j +
1
12
4x 2 (φxxxx) n

j +O(4x 4)

= (φxx) n
j +O(h2)

Putting these two together, get O(h2) approximation

φn+1
j − 2φn

j + φn−1
j

4t 2
=
φn

j+1 − 2φn
j + φn

j−1

4x 2
j = 2, 3, · · · , J − 1 (16)

• Scheme such as (16) often called a three level scheme since couples three “time
levels” of data (i.e. unknowns at three distinct, discrete times tn−1, tn, tn+1.
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FDA for 1-D Wave Equation

• Discretized Boundary conditions

φ
n+1
1 = φ

n+1
J = 0

• Discretized Initial conditions

• Need to specify two “time levels” of data (effectively φ(x, 0) and φt(x, 0)),
i.e. we must specify

φ
0
j , j = 1, 2, · · · , J

φ
1
j , j = 1, 2, · · · , J

ensuring that the initial values are compatible with the boundary conditions.

• Can solve (16) explicitly for φn+1
j :

φ
n+1
j = 2φn

j − φ
n−1
j + λ2

(
φ

n
j+1 − 2φn

j + φ
n−1
j

)
(17)
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FDA for 1-D Wave Equation

• Also note that (17) is actually a linear system for the unknowns
φn+1

j , j = 1, 2, · · · , J ; in combination with the discrete boundary conditions
can write

A φn+1 = b (18)

where A is a diagonal J × J matrix and φn+1 and b are vectors of length J .

• Such a difference scheme for an IVP is called an explicit scheme.
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3. Solution of Discrete Equations

Will not discuss in any detail until later this week
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1-D Wave Equation: 1st Order Form

• Let us again consider the 1-D wave equation, solved on the spatial domain
0 ≤ x ≤ 1, and where we will delay the specification of the boundary conditions
for the time being

• We have

φtt = φxx , 0 ≤ x ≤ 1 , t ≥ 0 (19)

φ(0, x) = φ0(x) (20)

φt(0, x) = Π0(x) (21)

• We rewrite (19) in a form that involves only first time derivatives by defining
the following auxiliary variables

Φ(t, x) ≡ φx (22)

Π(t, x) ≡ φt (23)
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1-D Wave Equation: 1st Order Form

• Using the commutativity of (mixed) partial derivatives, it is easy to show
that (19) is equivalent to the following system

Φt = Πx (24)

Πt = Φx (25)

• The initial conditions are then given by

Φ(0, x) =
d

dx
φ0(x) (26)

Π(0, x) = Π0(x) (27)

• We also note that if we are not concerned with actually computing values of
the scalar field, φ(t, x) itself (and in this treatment we will not be), then we
can equally well replace (26) with

Φ(0, x) = Φ0(x) (28)

i.e. we can specify the initial values of Φ ≡ φx directly
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1-D Wave Equation: 1st Order Form

• We now return to the issue of boundary conditions: we wish to illustrate a type
of boundary condition which is often imposed when a (pure) initial-value
problem for a hyperbolic system has been converted into an
initial-boundary-value problem by truncation of the solution domain to some
finite extent

• Thus, although we will solve the wave equation on the spatial domain
0 ≤ x ≤ 1, we want the solution to approximate the one that we would get if
we were able to solve on the unbounded domain −∞ < x <∞

• We assume that the initial conditions represent some set of disturbances which
are localized in space, well away from the boundaries x = 0 and x = 1, and
that the subsequent dynamics describes the propagation of these disturbances
in and away from the interval in which they are initially localized

• We recall that the general solution of the wave equation can be written in the
form

φ(t, x) ∼ `(x+ t) + r(x− t) (29)

where ` and r are the left- and right-moving parts of the solution, respectively
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1-D Wave Equation: 1st Order Form

• We further observe that it follows from (29) and the definitions of Φ and Π
that Φ ≡ φx and Π ≡ φt can also be written as a linear combination of right-
and left-moving pieces

• The boundary condition we now wish to employ is often called a radiation
condition, or Sommerfeld condition, and is equivalent to the demand that there
be no incoming radiation (disturbances) at the boundaries of the solution
domain

• This means that at x = 0 we must have only left-moving signals, so that
Φ(t, x) ∼ Φ(x+ t) and Π(t, x) ∼ Π(x+ t), or

Φt(t, 0) = Φx(t, 0) (30)

Πt(t, 0) = Πx(t, 0) (31)

• Similarly, at x = 1 we require only left-moving waves, so that
Φ(t, x) ∼ Φ(x− t) and Π(t, x) ∼ Π(x− t), or

Φt(t, 1) = −Φx(t, 1) (32)

Πt(t, 1) = −Πx(t, 1) (33)
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1-D Wave Equation: Crank-Nicholson Scheme

• We now discuss the Crank-Nicholson discretization scheme for the 1-D wave
equation as written in the first order form defined above: variations on this
theme will be used extensively in this week’s lectures and tutorial sessions

• We adopt the same uniform grid structure (in space and time) as previously,
but now use the stencil illustrated on the next page for our PDEs

Φt = Πx

Πt = Φx

• In our description of the Crank Nicholson FDA we will also introduce the notion
of finite difference operators, which provide a compact way of denoting many
FDAs, and which play a central role in the special purpose programming
language, RNPL, that we will use in the tutorial sessions
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Stencil for O(h2) Crank-Nicholson Approximation of
1-D Wave Equation

j

Scheme is centred at t         , x
n+1/2

j

j−1 j+1

n

n+1
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1-D Wave Equation: Crank-Nicholson Scheme

• To illustrate the scheme, it will suffice to consider one of the two first-order
PDEs that together constitute the wave equation: for specificity we focus on

Φt = Πx (34)

• The time derivative of Φ is approximated using

4t−1
(

Φn+1
j − Φn

j

)
= (Φt)

n+1
2

j +
1
24
4t 2 (Φttt)

n+1
2

j +O(4t 4) (35)

= (Φt)
n+1

2
j +O(4t 2)

• To approximate Πx, we write the usual O(h2) centred approximation for the
first derivative in operator form as

Dx Πn
j ≡ (24x )−1

(
Πn

j+1 −Πn
j−1

)
(36)

Dx = ∂x +
1
6
4x 2 ∂xxx +O(4x 4) (37)
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1-D Wave Equation: Crank-Nicholson Scheme

• We further introduce the (forward) time-averaging operator, µt:

µt u
n
j ≡ 1

2

(
u

n+1
j + u

n
j

)
= u

n+1
2

j +
1
8
4t 2 (utt)

n+1
2

j +O(4t 4) (38)

µt =
[
I +

1
8
4t 2 ∂tt +O(4t 4)

]
t=tn+1/2

(39)

where I is the identity operator.

• Assuming that 4t = O(4x ) = O(h), it is easy to show (exercise) that

µt

[
Dx Πn

j

]
= (Πx) n+1

2
j +O(h2)

• Putting above results together, we get the (O(h2)) Crank-Nicholson
approximation of Φt = Πx

Φn+1
j − Φn

j

4t
= µt

[
Dx Πn

j

]
(40)
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1-D Wave Equation: Crank-Nicholson Scheme

• Written out in full, this is

Φn+1
j − Φn

j

4t
=

1
2

[
Πn+1

j+1 −Πn+1
j−1

24x
+

Πn
j+1 −Πn

j−1

24x

]
(41)

• Note that the Crank-Nicholson scheme immediately generalizes to any equation
that can be written in the form

ut = L[u] (42)

where is L is some spatial operator. A Crank-Nicholson FDA of (42) is

un+1
j − un

j

4t
=

1
2
(
Lh
[
un+1

]
+ Lh [un]

)
(43)

where Lh is some discretization of L, not necessarily second order

• Also observe that Crank-Nicholson scheme is a two-level method (couples
unknowns at two discrete time steps)
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1-D Wave Equation: Crank-Nicholson Scheme

• The difference equations (40) can be applied at grid points labelled by
j = 2, 3, . . . , J − 1 (the interior points)

• For j = 1 and j = J we use discretized versions of the radiation (Sommerfeld)
boundary conditions

Φt(t, 0) = Φx(t, 0) (44)

Φt(t, 1) = −Φx(t, 1) (45)

• The time derivatives are approximated as previously, and for the space
derivatives we use second order, forward and backward (“off-centred”)
difference approximations defined by

DF
x Φn

j ≡ (24x )−1
(
−3Φn

j + 4Φn
j+1 − Φn

j+2

)
(46)

DF
x = ∂x +O(4x 2) exercise (47)

DB
x Φn

j ≡ (24x )−1
(

3Φn
j − 4Φn

j−1 + Φn
j−2

)
(48)

DB
x = ∂x +O(4x 2) exercise (49)
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1-D Wave Equation: Crank-Nicholson Scheme

• Employing the time-averaging operator, µt, defined previously, the FDAs for the
outgoing-radiation boundary conditions are

Φn+1
j − Φn

j

4t
= µt

[
DF

x Φn
j

]
j = 1 (50)

Φn+1
j − Φn

j

4t
= −µt

[
DB

x Φn
j

]
j = J (51)

• Finally, in our RNPL implementation of this scheme, we will set initial data of
the form

Φ0
j = A exp

[
− ((x− x0) /δ)2

]
(52)

Π0
j = σΦ0

j (53)

where σ = −1, 0, 1 will generate purely left-moving, left-moving/right-moving
(time symmetric) or purely right-moving data, respectively, and where A, x0

and δ are adjustable parameters of the gaussian pulse shape
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FDAs: Back to the Basics—Concepts & Definitions

• Will be considering the finite-difference approximation (FDA) of PDEs-0—will
generally be interested in the continuum limit, where the mesh spacing, or grid
spacing, usually denoted h, tends to 0.

• Because any specific calculation must necessarily be performed at some
specific, finite value of h, we will also be (extremely!) interested in the way
that our discrete solution varies as a function of h.

• Will always view h as the basic “control” parameter of a typical FDA.

• Fundamentally, for sensibly constructed FDAs, we expect the error in the
approximation to go to 0, as h goes to 0.
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Some Basic Concepts, Definitions and Techniques

• Let
Lu = f (54)

denote a general differential system.

• For simplicity, concreteness, can think of u = u(x, t) as a single function of one
space variable and time,

• Discussion applies to cases in more independent variables
(u(x, y, t), u(x, y, z, t) · · · etc.), as well as multiple dependent variables
(u = u = [u1, u2, · · · , un]).

• In (54), L is some differential operator (such as ∂tt− ∂xx) in our wave equation
example), u is the unknown, and f is some specified function (frequently called
a source function) of the independent variables.

42



Some Basic Concepts, Definitions and Techniques

• Here and in the following, will sometimes be convenient use notation where a
superscript h on a symbol indicates that it is discrete, or associated with the
FDA, rather than the continuum.

• With this notation, we will generically denote an FDA of (54) by

Lhuh = fh (55)

where uh is the discrete solution, fh is the specified function evaluated on the
finite-difference mesh, and Lh is the finite-difference approximation of L.
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Residual

• Note that another way of writing our FDA is

Lhuh − fh = 0 (56)

• Often useful to view FDAs in this form for following reasons

• Have a canonical view of what it means to solve the FDA—“drive the
left-hand side to 0”.

• For iterative approaches to the solution of the FDA (which are common,
since it may be too expensive to solve the algebraic equations directly), are
naturally lead to the concept of a residual.

• Residual is simply the level of “non-satisfaction” of our FDA (and, indeed, of
any algebraic expression).

• Specifically, if ũh is some approximation to the true solution of the FDA, uh,
then the residual, rh, associated with ũh is just

rh ≡ Lhũh − fh (57)

• Leads to the view of a convergent, iterative process as being one which “drives
the residual to 0”.
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Truncation Error

• Truncation error, τh, of an FDA is defined by

τh ≡ Lhu− fh (58)

where u satisfies the continuum PDE (54).

• Note that the form of the truncation error can always be computed (typically
using Taylor series) from the finite difference approximation and the differential
equations.
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Convergence

• Assume FDA is characterized by a single discretization scale, h,

• we say that the approximation converges if and only if

uh → u as h→ 0. (59)

• In practice, convergence is clearly our chief concern as numerical analysts,
particularly if there is reason to suspect that the solutions of our PDEs are
good models for real phenomena.

• Note that this is believed to be the case for many interesting problems in
general relativistic astrophysics—the two black hole problem being an excellent
example.
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Consistency

• Assume FDA with truncation error τh is characterized by a single discretization
scale, h,

• Say that the FDA is consistent if

τh → 0 as h→ 0. (60)

• Consistency is obviously a necessary condition for convergence.
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Order of an FDA

• Assume FDA is characterized by a single discretization scale, h

• Say that the FDA is p-th order accurate or simply p-th order if

lim
h→0

τh = O(hp) for some integer p (61)
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Solution Error

• Solution error, eh, associated with an FDA is defined by

eh ≡ u− uh (62)
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Relation Between Truncation Error and Solution
Error

• Common to tacitly assume that

τh = O(hp) −→ eh = O(hp)

• Assumption is often warranted, but is extremely instructive to consider why it is
warranted and to investigate (following Richardson 1910 (!)) in some detail the
nature of the solution error.

• Will return to this issue in more detail later.
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Error Analysis and Convergence Tests

• Discussion here applies to essentially any continuum problem which is solved
using FDAs on a uniform mesh structure.

• In particular, applies to the treatment of ODEs and elliptic problems

• For such problems convergence is often easier to achieve due to fact that the
FDAs are typically intrinsically stable

• Also note that departures from non-uniformity in the mesh do not, in general,
complete destroy the picture: however, do tend to distort it in ways that are
beyond the scope of these notes.

• Difficult to overstate importance of convergence studies
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Sample Analysis: The Advection Equation

• Consider solution of advection equation,

ut = a ux (a > 0) 0 ≤ x ≤ 1, t ≥ 0 (63)

u(x, 0) = u0(x)

with periodic boundary conditions; i.e. x = 0 and x = 1 identified

• Note that initial conditions u0(x) must be compatible with periodicity, i.e must
specify periodic initial data.

• Given initial data, u0(x), can immediately write down the full solution

u(x, t) = u0(x+ a t mod 1) (64)

where mod is the modulus function which “wraps” x+ a t, t > 0 onto the unit
interval.
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Sample Analysis: The Advection Equation

• Due to the simplicity and solubility of this problem, will see that can perform a
rather complete closed-form (“analytic”) treatment of the convergence of
simple FDAs of (63).

• Point of the exercise, however, is not to advocate parallel closed-form
treatments for more complicated problems.

• Rather, key idea to be extracted that, in principle (always), and in practice
(almost always, i.e. I’ve never seen a case where it didn’t work, but then there’s
a lot of computations I haven’t seen):

The error, eh, of an FDA is no less computable than the solution, uh itself.

• Has widespread ramifications, one of which is that there is no excuse for
publishing solutions of FDAs without error bars, or their equivalents!
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Sample Analysis: The Advection Equation

• First introduce some difference operators for the usual O(h2) centred
approximations of ∂x and ∂t:

Dx u
n
j ≡

un
j+1 − u

n
j−1

24x
(65)

Dt u
n
j ≡

un+1
j − un−1

j

24t
(66)

• Again take
4x ≡ h 4t ≡ λ 4x = λh

and hold λ fixed as h varies, so that, as usual, FDA is characterized by the
single scale parameter, h.

• First key idea behind error analysis: want to view the solution of the FDA as a
continuum problem,

• Hence express both the difference operators and the FDA solution as asymptotic
series (in h) of differential operators, and continuum functions, respectively.
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Sample Analysis: The Advection Equation

• Have the following expansions for Dx and Dt:

Dx = ∂x +
1
6
h2 ∂xxx +O(h4) (67)

Dt = ∂t +
1
6
λ2h2 ∂ttt +O(h4) (68)

• In terms of the general, abstract formulation discussed earlier, have

Lu− f = 0 ⇐⇒ (∂t − a ∂x)u = 0 (69)

Lhuh − fh = 0 ⇐⇒ (Dt − aDx)uh = 0 (70)

Lhu− fh ≡ τh ⇐⇒ (Dt − aDx)u ≡ τh =
1
6
h2
(
λ2∂ttt − a ∂xxx

)
u+O(h4) = O(h2)(71)

55



Sample Analysis: The Advection Equation

• Second key idea behind error analysis: The Richardson ansatz: Appeal to L.F.
Richardson’s old observation (ansatz), that the solution, uh, of any FDA which

1. Uses a uniform mesh structure with scale parameter h,
2. Is completely centred

should have the following expansion in the limit h→ 0:

uh(x, t) = u(x, t) + h2e2(x, t) + h4e4(x, t) + · · · (72)

• Here u is the continuum solution, while e2, e4, · · · are (continuum) error
functions which do not depend on h.

• The Richardson expansion (72), is the key expression from which almost all
error analysis of FDAs derives.
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Sample Analysis: The Advection Equation

• In the case that the FDA is not completely centred, we will have to modify the
ansatz.

• In particular, for first order schemes, will have

uh(x, t) = u(x, t) + he1(x, t) + h2ex(x, t) + h3e3(x, t) + · · · (73)

• Also note that Richardson expansion is completely compatible with the
assertion discussed previously namely that

τh = O(h2) −→ eh ≡ u− uh = O(h2) (74)

• However, Richardson form contains much more information than “second-order
truncation error should imply second-order solution error”

• Dictates the precise form of the h dependence of uh.
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Sample Analysis: The Advection Equation

• Given the Richardson expansion, can proceed with error analysis.

• Start from the FDA, Lhuh − fh = 0, and replace both Lh and uh with
continuum expansions:

Lhuh = 0 −→ (Dt − aDx)
(
u+ h2e2 + · · ·

)
= 0

−→
(
∂t +

1
6
λ2h2∂ttt − a ∂x −

1
6
ah2 ∂xxx + · · ·

)
×
(
u+ h2e2 + · · ·

)
= 0

• Now demand that terms in above vanish order-by-order in h

• At O(1) (zeroth-order), have

(∂t − a ∂x)u = 0 (75)

which is simply a statement of the consistency of the difference approximation.
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Sample Analysis: The Advection Equation

• More interestingly, at O(h2) (second-order), find

(∂t − a ∂x) e2 =
1
6
(
a∂xxx − λ2∂ttt

)
u (76)

• View u as a “known” function, then this is simply a PDE for the leading order
error function, e2.

• Moreover, the PDE governing e2 is of precisely the same nature as the original
PDE, (∂t − a∂x)u = 0
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Sample Analysis: The Advection Equation

• In fact, can solve (76) for e2.

• Given the “natural” initial conditions

e2(x, 0) = 0

(i.e. we initialize the FDA with the exact solution so that uh = u at t = 0),
and defining q(x+ at):

q(x+ at) ≡ 1
6
a
(
1− λ2a2

)
∂xxxu(x, t)

have
e2(x, t) = t q(x+ at mod 1) (77)

• Note that, as is typical for leap-frog, we have linear growth of the finite
difference error with time (to leading order in h).
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Sample Analysis: The Advection Equation

• Also note that analysis can be extended to higher order in h—what results,
then, is an entire hierarchy of differential equations for u and the error
functions e2, e4, e6, · · ·.

• Indeed, useful to keep following view in mind:

When one solves an FDA of a PDE, one is not solving some system which
is “simplified” relative to the PDE, rather, one is solving a much richer
system consisting of an (infinite) hierarchy of PDEs, one for each function
appearing in the Richardson expansion (72).
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Convergence Tests

• In general case we will not be able to solve the PDE governing u, let alone that
governing e2—otherwise we wouldn’t be considering the FDA in the first place!

• Is precisely in this instance where the true power of Richardson’s observation is
evident!

• The key observation is that starting from (72), and computing FD solutions
using the same initial data, but with differing values of h, can learn a great deal
about the error in FD approximations.

• The whole game of investigating the manner in which a particular FDA
converges or doesn’t (i.e. looking at what happens as one varies h) is known as
convergence testing.

• Important to realize that there are no hard and fast rules for convergence
testing; rather, one tends to tailor the tests to the specifics of the problem at
hand, and, being largely an empirical approach, one gains experience and
intuition as one works through more and more problems.

• However, the Richardson expansion, in some form or other, always underlies
convergence analysis of FDAs.
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Convergence Tests

• A simple example of a convergence test, and one commonly used in practice is
as follows.

• Compute three distinct FD solutions uh, u2h, u4h at resolutions h, 2h and 4h
respectively, but using the same initial data (as naturally expressed on the 3
distinct FD meshes).

• Also assume that the finite difference meshes “line up”, i.e. that the 4h grid
points are a subset of the 2h points which are a subset of the h points

• Thus, the 4h points constitute a common set of events (xj, t
n) at which

specific grid function values can be directly (i.e. no interpolation required) and
meaningfully compared to one another.
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Convergence Tests
• From the Richardson ansatz (72), expect:

uh = u+ h2e2 + h4e4 + · · ·
u2h = u+ (2h)2e2 + (2h)4e4 + · · ·
u4h = u+ (4h)2e2 + (4h)4e4 + · · ·

• Then compute a quantity Q(t), which will call a convergence factor, as follows:

Q(t) ≡ ‖u
4h − u2h‖x
‖u2h − uh‖x

(78)

where ‖ · ‖x is any suitable discrete spatial norm, such as the `2 norm, ‖ · ‖2:

‖uh‖2 =

J−1
J∑

j=1

(
uh

j

)21/2

(79)

• Subtractions in (78) can be taken to involve the sets of mesh points which are
common between u4h and u2h, and between u2h and uh.
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Convergence Tests

• Is simple to show that, if the FD scheme is converging, then should find:

lim
h→0

Q(t) = 4. (80)

• In practice, can use additional levels of discretization, 8h, 16h, etc. to extend
this test to look for “trends” in Q(t) and, in short, to convince oneself (and,
with luck, others), that the FDA really is converging.

• Additionally, once convergence of an FDA has been established, then point-wise
subtraction of any two solutions computed at different resolutions, immediately
provides an estimate of the level of error in both.

• For example, if one has uh and u2h, then, again by the Richardson ansatz have

u2h − uh =
((
u+ (2h)2e2 + · · ·

)
−
(
u+ h2e2 + · · ·

))
(81)

= 3h2e2 +O(h4) ∼ 3eh ∼ 3
4
e2h (82)
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Richardson Extrapolation

• Richardson extrapolation: Richardson’s observation (72) also provides the basis
for all the techniques of Richardson extrapolation

• Solutions computed at different resolutions are linearly combined so as to
eliminate leading order error terms, providing more accurate solutions.

• As an example, given uh and u2h which satisfy (72), can take the linear
combination

ūh ≡ 4uh − u2h

3
(83)

which, by (72), is easily seen to be O(h4), i.e. fourth-order accurate!

ūh ≡ 4uh − u2h

3
=

4
(
u+ h2e2 + h4e4 + · · ·

)
−
(
u+ 4h2e2 + 16h4e4 + · · ·

)
3

= −4h4e4 +O(h6) = O(h4) (84)
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Richardson Extrapolation

• When it works, Richardson extrapolation has an almost magical quality about it

• However, generally have to start with fairly accurate (on the order of a few %)
solutions in order to see the dramatic improvement in accuracy suggested
by (84).

• Still a struggle to achieve that sort of accuracy (i.e. a few %) for any
computation in many areas of numerical relativity/astrophysics and keep the
error smooth (which is necessary for Richardson extrapolation to be effective)

• Thus, techniques based on Richardson extrapolation have not had a major
impact in this context, although higher-order O(h4), O(h6) etc. finite
difference methods are increasingly common for the vacuum Einstein equations
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Independent Residual Evaluation

• Question that often arises in convergence testing: is the following:

“OK, you’ve established that uh is converging as h→ 0, but how do you
know you’re converging to u, the solution of the continuum problem?”

• Here, notion of an independent residual evaluation is very useful.

• Idea is as follows: have continuum PDE

Lu− f = 0 (85)

and FDA
Lhuh − fh = 0 (86)

• Assume that uh is apparently converging from, for example, computation of
convergence factor (78) that looks like it tends to 4 as h tends to 0.

• However, do not know if we have derived and/or implemented our discrete
operator Lh correctly.
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Independent Residual Evaluation

• Note that implicit in the “implementation” is the fact that, particularly for
multi-dimensional and/or implicit and/or multi-component FDAs, considerable
“work” (i.e. analysis and coding) may be involved in setting up and solving the
algebraic equations for uh.

• As a check that solution is converging to u, consider a distinct (i.e.
independent) discretization of the PDE:

L̃hũh − fh = 0 (87)

• Only thing needed from this FDA for the purposes of the independent residual
test is the new FD operator L̃h.

• As with Lh, can expand L̃h in powers of the mesh spacing:

L̃h = L+ h2E2 + h4E4 + · · · (88)

where E2, E4, · · · are higher order (involve higher order derivatives than L)
differential operators.
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Independent Residual Evaluation

• Now simply apply the new operator L̃h to our FDA uh and investigate what
happens as h→ 0.

• If uh is converging to the continuum solution, u, will have

uh = u+ h2e2 +O(h4) (89)

and will compute

L̃huh =
(
L+ h2E2 +O(h4)

) (
u+ h2e2 +O(h4)

)
(90)

= Lu+ h2(E2 u+ Le2) (91)

= O(h2) (92)

• That is L̃huh will be a residual-like quantity that converges quadratically as
h→ 0.
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Independent Residual Evaluation
• Conversely, assume there is a problem in the derivation and/or implementation

of Lhuh = fh = 0, but there is still convergence; i.e. for example,

u2h − uh → 0 as h→ 0 (93)

• Then must have something like

uh = u+ e0 + he1 + h2e2 + · · · (94)

where crucial fact is that the error must have an O(1) component, e0.

• In this case, will compute

L̃huh =
(
L+ h2E2 +O(h4)

) (
u+ e0 + he1 + h2e2 +O(h4)

)
= Lu+ Le0 + hLe1 +O(h2)

= Le0 +O(h)

• Unless one is extraordinarily (un) lucky, and Le0 vanishes, will not observe the
expected convergence
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Independent Residual Evaluation

• Instead, will see L̃huh − fh tending to a finite (O(1)) value—a sure sign that
something is wrong.

• Possible problem: might have slipped up in our implementation of the
“independent residual evaluator”, L̃h

• In this case, results from test will be ambiguous at best!

• However, a key point here is that because L̃h is only used a posterior on a
computed solution (never used to compute ũh, for example) it is a relatively
easy matter to ensure that L̃h has been implemented in an error-free fashion
(perhaps using symbolic manipulation facilities).

• Also, many of the restrictions commonly placed on the “real” discretization
(such as stability and the ease of solution of the resulting algebraic equations)
do not apply to L̃h.

• Finally, note that although have assumed in the above that L, Lh and L̃h are
linear, the technique of independent residual evaluation works equally well for
non-linear problems.
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Stability Analysis
• One of the most frustrating/fascinating features of FD solutions of time

dependent problems: discrete solutions often “blow up”—e.g. floating-point
overflows are generated at some point in the evolution

• ‘Blow-ups” can sometimes be caused by legitimate (!) “bugs”—i.e. an
incorrect implementation—at other times it is simply the nature of the FD
scheme which causes problems.

• Are thus lead to consider the stability of solutions of difference equations

• Again consider the 1-d wave equation, utt = uxx

• Note that it is a linear, non-dispersive wave equation

• Thus the “size” of the solution does not change with time:

‖u(x, t)‖ ∼ ‖u(x, 0)‖ , (95)

where ‖ · ‖ is an suitable norm, such as the L2 norm:

‖u(x, t)‖ ≡
(∫ 1

0

u(x, t)2 dx
)1/2

. (96)
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Stability Analysis

• Will use the property captured by (95) as working definition of stability.

• In particular, if you believe (95) is true for the wave equation, then you believe
the wave equation is stable.

• Fundamentally, if FDA approximation converges, then expect the same
behaviour for the difference solution:

‖un
j ‖ ∼ ‖u

0
j‖ . (97)

• FD solution constructed by iterating in time, generating

u
0
j , u

1
j , u

2
j , u

3
j , u

4
j , · · ·

in succession, using the FD equation

u
n+1
j = 2un

j − u
n−1
j + λ2

(
u

n
j+1 − 2un

j + u
n
j−1

)
.
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Stability Analysis

• Not guaranteed that (97) holds for all values of λ ≡ 4t /4x .

• For certain λ, have
‖un

j ‖ � ‖u
0
j‖ ,

and for those λ, ‖un‖ diverges from u, even (especially!) as h→ 0—that is,
the difference scheme is unstable.

• For many wave problems (including all linear problems), given that a FD
scheme is consistent (i.e. so that τ̂ → 0 as h→ 0), stability is the necessary
and sufficient condition for convergence (Lax’s theorem).
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Heuristic Stability Analysis

• Write general time-dependent FDA in the form

un+1 = G[un] , (98)

• G is some update operator (linear in our example problem)

• u is a column vector containing sufficient unknowns to write the problem in
first-order-in-time form.

• Example: introduce new, auxiliary set of unknowns, vn
j , defined by

v
n
j = u

n−1
j ,

then can rewrite differenced-wave-equation (16) as

u
n+1
j = 2un

j − v
n
j + λ2

(
u

n
j+1 − 2un

j + u
n
j−1

)
, (99)

v
n+1
j = u

n
j , (100)
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Heuristic Stability Analysis

• Thus with
un = [un

1 , v
n
1 , u

n
2 , v

n
2 , · · · u

n
J , v

n
J ] ,

(for example), (99-100) is of the form (98).

• Equation (98) provides compact way of describing the FDA solution.

• Given initial data, u0, solution after n time-steps is

un = Gnu0
, (101)

where Gn is the n-th power of the matrix G.

• Assume that G has a complete set of orthonormal eigenvectors

ek, k = 1, 2, · · · J ,

and corresponding eigenvalues

µk, k = 1, 2, · · · J ,
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Heuristic Stability Analysis

• Thus have
Gek = µk ek, k = 1, 2, · · · J .

• Can then write initial data as (spectral decomposition):

u0 =
J∑

k=1

c
0
k ek ,

where the c0k are coefficients.

• Using (101), solution at time-step n is

un = Gn

(
J∑

k=1

c
0
k ek

)
(102)

=
J∑

k=1

c
0
k (µk)n ek . (103)
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Heuristic Stability Analysis

• If difference scheme is to be stable, must have

|µk| ≤ 1 k = 1, 2, · · · J (104)

(Note: µk will be complex in general, so |µ| denotes the complex modulus,
|µ| ≡

√
µµ?).

• Geometric interpretation: eigenvalues of the update matrix must lie on or
within the unit circle
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Heuristic Stability Analysis
Im

Re

unit circle

• Schematic illustration of location in complex plane of eigenvalues of update
matrix G.

• In this case, all eigenvalues (dots) lie on or within the unit circle, indicating
that the corresponding finite difference scheme is stable.
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Von-Neumann (Fourier) Stability Analysis
(Summary)

• Von-Neumann (VN) stability analysis based on the ideas sketched above

• Assumes that difference equation is linear with constant coefficients, periodic
boundary conditions boundary conditions are periodic

• Can then use Fourier analysis: difference operators in real-space variable x −→
algebraic operations in Fourier-space variable k

• VN applied to wave-equation example shows that must have

λ ≡ 4t
4x
≤ 1 ,

for stability of scheme (16).

• Condition is often called the CFL condition—after Courant, Friedrichs and
Lewy who derived it in 1928

• This type of instability has “physical” interpretation, often summarized by the
statement the numerical domain of dependence of an explicit difference scheme
must contain the physical domain of dependence.
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