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1 Basic considerations

The description of modern astronomy for strongly gravitating systems or cosmology requires
general relativity. In many astrophysical systems, high energy electromagnetic radiation is
often emitted in the regions of strong gravitational fields around compact objects. These
systems are poorly understood, but data is pouring from all directions! Observationally a
number of high energy X-ray, and γ ray telescopes are providing exciting (and challenging)
information about a number of sources. Soon, gravitational wave detectors will provide a
completely (and often complementary) new way to probe these systems. Luckily to these
exciting observational inputs we are now (and even better towards the future) in a position
to directly –and from first principles– study these systems to the best of our knowledge
and, confrontation with the data will strengthen or modify our understanding of gravity,
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matter in extreme regimes, etc. An important point here is that as opposed to laboratory
experiments, we do not have control on ‘nature’s experiments’ we can not simplify the inputs
or the setup, we can however concentrate on relevant scenarios where, we think some details
are not important. We will discuss some relevant examples later.

2 No EM radiation in vacuum, we need more than

nothing

Despite what Hollywood might want us to believe, there can be no radiation in pure vacuum.
To do so, we need at least ‘hot’ matter to produce some type of radiation. Thus, the simplest
system we can think off is gravity interacting with the simplest matter form we can think
of at a theoretical level. This is the case for a perfect fluid, whose strength energy tensor is
given by,

Tab = ρhuaub + pgab (1)

with uaua = −1 the four-velocity of the fluid, p its pressure, ρ density and the relativistic
specific enthalpy h ≡ 1 + ǫ+ p/ρ with ǫ the specific energy density. This assumption ignores
all microphysics and so is just in effective description. For the systems we are interested
on, these details are for the most part unimportant. The equations of General Relativistic
Hydrodynamics are

∇aT
ab = 0 ; ∇aJ

a = 0 . (2)

(with Ja = ρua). The equations above, together with the normalization condition for ua,
constitute 6 equations for the 7 unknowns (ρ, ǫ, p, ua); in order to close the system a further
equation must be added. This is an equation of state, p = F (ρ, ǫ). Typical choices are the
ideal fluid (p = (Γ − 1)ρǫ) and a polytrope (p = κρΓ). Now, the equations defined by the
system (2) are truly non-linear, so the issues raised earlier apply here. We stressed that
in order to obtain the correct description of shocks and other peculiarities naturally arising
in these type of equations, expressing the equations in “conservation form” was useful in
exploiting Godunov methods that are designed for truly nonlinear equations.

2.1 A special case, static stars

As an example, let us study –and derive an exercise– the case of a static star in spherical
symmetry. Staticity and spherical symmetry implies 3 Killing fields exist and so we can
adopt coordinates adapted to express the line element and stress tensor as,

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2 (3)

Tab = ρ̂(r)uaub + p(r)gab (4)
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where we have defined ρ̂(r) = ρ(r)h(r) and ua = (−
√

B, 0, 0, 0) Now, Einstein equations
–now there is a source!– imply,

B′′

2B
− B′

4B

(

A′

A
+

B′

B

)

− A′

rA
= −4π(ρ̂ − p)A (5)

−1 +
r

2A

(

−A′

A
+

B′

B

)

+
1

A
= −4π(ρ̂ − p)r2 (6)

−B′′

2A
+

B′

4A

(

A′

A
+

B′

B

)

− B′

rA
= −4π(ρ + 3p)B (7)

where a prime ′ denotes a derivative with respect of r. Now, the equations (2) imply that in
our case of stationarity and spherical symmetry,

B′

B
= − 2p′

p + ρ̂
(8)

PROBLEM 2.1

Prove:

• ua = (−
√

B, 0, 0, 0)

• Write the components of Tab

• Einstein equations are Gab = 8πTab however they can be written also as Rab = Sab with
Sab a symmetric tensor defined in terms of Tab, find Sab.

• Derive equations (5)-(7) and (8).

Now, using equations (5)-(7) obtain an equation which does not involve B at all (ie. it
will depend only of A, r and ρ̂. Such equation implies

( r

A

)

′

= 1 − 8πρ̂r2 (9)

whose solution is

A(r) =

(

1 − 2
M(r)

r

)

−1

(10)

with,

M(r) =

∫ r

o

4πr′2ρ̂(r′)dr′ (11)

Since we have now determined A in terms of fluid variables and we already had B in terms
of them (equation 8), we can eliminate metric functions from Einstein equations (say 6) and
after some simple algebra obtain,

−rp′ = Mρ̂(r)

(

1 +
p

ρ̂

) (

1 +
4πp

M

) (

1 − 2
M

r

)

−1

(12)

Thus, equation (12) coupled to the radial derivative of equation (12), together with M(r =
0) = 0 and a given value of the central density ρ̂(r = 0) can be used to obtain solutions
describing stars in hydrostatic equilibrium in general relativity, provided an equation of state
is adopted. An example is a polytrope where p = κρ̂n. The numerical integration of this
problem is easy, it involves ordinary differential equations in one dimension. As an optional
assignment, consider trying this out and you will be “building your own star”.
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3 Beyond GRHydro, magnetic fields and then some

Spectacularly energetic astrophysical events, like AGNs, quazars, blazars, γ ray bursts, typ-
ically have jets, where flows of extremely high Lorentz factors are observed which are also
collimated in a narrow beam. There is little doubt that magnetic fields play a key role in the
collimation and energetics observed though the theoretical understanding of these events is
still limited. Important developments are taking place thanks to numerical simulations that
are able to concentrate on particular stages of (some of) these events, though there are a

lots of open issues.
At the theoretical level, to describe these systems one must be able to incorporate the

main physics ingredients thought to play a role. General relativity (as compact objects are
involved), Hydrodynamics (to describe the dynamics of matter), Electromagnetic fields (to
incorporate effects driven by EM fields). To these basic building blocks, ideally one would
like to add microphysics and cooling mechanisms as a simple equation of state can not
capture the details of the matter behavior and energy carried out by neutrinos and other
processes not accounted for by the building blocks above. Depending the particular problem
one can argue some of these processes do not significantly affect the dynamics and so a
limited description will capture essentially the true behavior of the system. We thus stay
within the basic building blocks and describe the underlying theory and relevant issues.

4 The MHD equations in general relativity

We first derive the equations of motion for relativistic MHD and a dynamic spacetime. The
equations are written in conservation form as required for High-Resolution Shock-Capturing
(HRSC) numerical methods. We then discuss the transformation between conserved and
primitive variables.

4.1 Equations of motion

In what follows we combine some notes from different sources. First we deal with the so
called em ideal MHD limit. One reference (of many available in the literature) here is [1] To
begin, we assume a stress energy tensor of the form

Tab = [ρ0 (1 + ǫ) + P ] uaub + Pgab + FacF
c
b − 1

4
gabFcdF

cd, (13)

where the first few terms describe the fluid and the final two terms the electromagnetic
field. The fluid and electromagnetic components are coupled through the relativistic form
of Ohm’s law:

Ja +
(

ubJ
b
)

ua = σFabu
b, (14)

where Ja is the 4-current. So far what we are describing is General Relativity coupled to
both hydro and EM such that Tab = TM

ab + TEMab with TM
ab describing the stress energy

tensfor of a perfect fluid and TEMab the one defined by the electromagnetic fields. At this
level, it is often the case that different approximations are employed depending on the system
being considered. For instance, if the situation is inertia dominated (i.e. the fluid dictates

4



how EM fields lines behave) the ideal MHD approximation arises. If, at the other extreme
the dynamics is electromagnetically dominated as in the case of plasmas where the inertia of
matter is negligible the Force-Free approximation is adopted. We will fist discuss the ideal
MHD case and then briefly describe the others.

The ideal MHD approximation is simply the statement that the fluid has perfect con-
ductivity, i.e., σ → ∞. Equivalently, this can be expressed as

Fab ub = 0, (15)

which states that the electric field in the frame of the fluid vanishes. This is sometimes
referred to as the “freezing-in” condition of the magnetic field; namely, in the frame of the
fluid, the magnetic field lines are frozen to the fluid and carried along with it.

With this in mind, a convenient set of substitutions for the electromagnetic variables is
to define 4-covariant “electric” and “magnetic” four-vectors

ea = F abub, ba = ∗F abub, (16)

where ∗F ab ≡ ǫabcdFcd/2 and ǫabcd is the standard totally antisymmetric Levi-Civita tensor.
Note that we can write these as

Fcd = uced − udec − ǫcdefu
ebf , ∗Fcd = ucbd − udbc + ǫcdefu

eef , (17)

where we have the constraints uae
a = 0 = uab

a. All the information in the Maxwell tensor,
Fab, is now contained in these two four vectors.

With these substitutions, the electromagnetic part of the stress tensor can be written as

TEM
ab = uaub [ece

c + bcb
c] +

1

2
gab [ece

c + bcb
c] − eaeb − babb + 2u(aǫb)cdee

cudbe. (18)

In the MHD approximation, the electric four vector is identically zero and the full stress
tensor for MHD can be written as

Tab = [ρ0 (1 + ǫ) + P + bcb
c] uaub +

[

P +
1

2
bcb

c

]

gab − babb. (19)

The matter equations of motion can now be written in conservation form

∇aT
ab = 0, ∇a∗F ab = 0. (20)

To these must be appended the baryon conservation equation ∇a (ρ0u
a) = 0.

In a general spacetime we decompose these equations in the usual ADM 3+1 split by
projecting along and orthogonal to a unit normal vector, na, which is orthogonal to a foliation
of spatial hypersurfaces. The projection tensor is

hab = gab + nanb, (21)

with gab the metric on the 4-manifold. The Einstein equations have the usual 3+1 form with
both evolution and constraint equations. Because our focus in this paper is developing a
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robust MHD code, we will emphasize and solve the flat spacetime equations in later sections.
However, our approach in deriving the equations in this section is completely general.

Conservative variables are defined in the conventional way

E = Tab nanb, (22)

Sb = −Tac nahb
c, (23)

(⊥T )cd = Tab ha
ch

b
d. (24)

With respect to the MHD stress tensor, these give

E = [ρ0 (1 + ǫ) + P + bcb
c] (naua)

2 −
[

P +
1

2
bcb

c

]

− (nab
a)2 , (25)

Sb = − [ρ0 (1 + ǫ) + P + bcb
c] (naua) (⊥u)b + (nab

a) (⊥b)b , (26)

(⊥T )cd = [ρ0 (1 + ǫ) +P + bcb
c] (⊥u)c (⊥u)d +

[

P +
1

2
bcb

c

]

hcd − (⊥b)c (⊥b)d , (27)

where we have defined

W ≡ −naua, va ≡ 1

W
(⊥u)a , (28)

and (⊥X)a ≡ ha
bX

b denotes a projection. Note that W is the Lorentz factor between the
fluid frame and the fiducial observers moving orthogonally to the spatial hypersurfaces. In
addition, va is the (purely spatial) coordinate velocity of the fluid. The matter equations
are projected along and orthogonal to na, and expressed in terms of the conserved variables

0 = −na∂aE + KE − 1

α2
Da

(

α2Sa
)

+ (⊥T )ab Kab, (29)

0 = hbc

[

−na∂aS
b + KSb + 2SaKa

b − 1

α
Sa∂aβ

b − 1

α
Da

(

α (⊥T )ab
)

− ∂bα

α
E

]

, (30)

0 = Da

(

∗F abnb

)

, (31)

0 = hbc

[

−na∂a

(

∗F dendh
b
e

)

+ ∗F dbndK +
1

α
Da

(

α (⊥∗F )ab
)

− 1

α
∗F dand∂aβ

b

]

, (32)

0 =
1

α
na∂a (αD) +

1

α
Da (αDva) − KW, (33)

where α and βb are the ADM (3+1) lapse and shift, Kab is the extrinsic curvature, and
Da is the covariant derivative compatible with hab. These equations, in order, are the
energy equation, the Euler equation, the no monopole constraint, the induction (or Faraday)
equation and the baryon conservation equation.

It is advantageous to use the standard magnetic field as the evolution variable, rather
than the magnetic four vector ba. This amounts to working in the frame of the fiducial
observers moving along na instead of in the fluid frame. The electric and magnetic fields in
this frame are then

Ea = ha
bFbcn

c, Ba =
1

2
ǫabcF

bc. (34)
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where ǫabc ≡ ndǫdabc. The ideal MHD approximation then becomes a relation giving the
electric field in terms of the magnetic field in the frame of the orthogonally moving observers:

Ea =
1

ndud
ǫabcu

bBc. (35)

In practice, two modifications are made to the MHD equations in order to solve them.
First, we evolve the quantity τ = E − D instead of E alone. This is often done to have an
energy quantity that reduces to the Newtonian value in the nonrelativistic limit. Secondly,
the source term in the induction equation can be eliminated by combining that equation
with the no-monopole constraint. The final form for our matter equations thus becomes

∂t

(√
h τ

)

+ ∂i

[√−g

(

Si − βi

α
τ − viD

)]

=
√−g

[

(⊥T )ab Kab − 1

α
Sa∂aα

]

, (36)

∂t

(√
h Sb

)

+ ∂i

[√−g

(

(⊥T )i
b −

βi

α
Sb

)]

=

√−g

[

3Γ
i

ab (⊥T )a
i +

1

α
Sa∂bβ

a − 1

α
∂bα E

]

, (37)

− 1√
h

∂i

(√
h Bi

)

= 0, (38)

∂t

(√
h Bb

)

+ ∂i

[√−g

(

Bb

(

vi − βi

α

)

− Bi

(

vb − βb

α

))]

= 0, (39)

∂t

(√
h D

)

+ ∂i

[√−g D

(

vi − βi

α

)]

= 0. (40)

4.2 Primitive and conserved variables

The evolution equations give the time dependence of the conserved variables, u = (D,Si, τ, Bj)
T ,

but they also depend on the primitive variables w = (ρ0, vi, P, bj)
T . As discussed in this

section, for relativistic fluids the transformation from conserved to primitive variables is
transcendental. The ability to solve for physical values of the primitive variables under a
wide variety of conditions is an important and challenging part of writing a relativistic fluid
code.

The conserved variables are

D = Wρ0, (41)

Sb = (h + bcb
c) W 2 vb + (nab

a) (⊥b)b , (42)

τ = (h + bcb
c) W 2 − P − 1

2
bcb

c − (nab
a)2 − Wρ0, (43)

Ba = −Wba − ua · (ncbc) , (44)

where the fluid enthalpy is h = ρ0(1 + ǫ) + P . To obtain the inverse transformation, we
reduce the problem to the solution for the roots of a single nonlinear function. The method
is as follows.
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We eliminate the magnetic four vector, bi, from the above equation using

ba = − 1

W

[

Ba + ua · (⊥u)bBb

]

. (45)

On replacing this, we get

D = Wρ0, (46)

Si =
(

hW 2 + B2
)

vi −
(

Bjvj

)

Bi, (47)

τ = hW 2 + B2 − P − 1

2

[

(

Bivi

)2
+

B2

W 2

]

− Wρ0, (48)

where B2 ≡ BiB
i, v2 ≡ viv

i, and the indices are raised and lowered by the spatial metric
hij. The spatial norm of vi can be expressed in terms of the Lorentz factor

W 2 =
1

1 − vivi

. (49)

Density and pressure, two primitive variables, can be expressed as

ρ0 = D
1

W
= D

√
1 − v2, P = (h − ρ0)

Γ − 1

Γ
. (50)

Note that we assume in this section a Γ-law equation of state.
It now remains to find vi (or W ) and h from our knowledge of D,Si, τ and Bi. We

contract Bi with Si

SiB
i = hW 2 (Bivi), (51)

and use this to eliminate Bivi in the expressions above for τ and Si. From SiSi we derive
the expression

−(hW 2)2 W 2 SiS
i + (hW 2)2 (hW 2 + B2)

2
(W 2 − 1)

−W 2(2hW 2 + B2) (SiBi)
2

= 0. (52)

This can be solved for W 2 in terms of conservative variables and the quantity x ≡ hW 2:

W 2 =

[

1 − (2x + B2)(BjSj)
2 + x2(SjSj)

x2(x + B2)2

]

−1

. (53)

Finally, we substitute (53) into the equation for τ (which comes about on using our above
expressions for the density and pressure):

[

x

(

1 − Γ − 1

Γ

1

W 2

)

− D

(

1 − Γ − 1

Γ

1

W

)

− τ +
1

2
B2

(

1 + v2
)

]

x2 =
1

2

(

BjSj

)2
. (54)

The full expression is thus a nonlinear function in x, the roots of which we must calculate.
Note that all the coefficients in this expression are conservative variables that on numerical
integration of the evolution equations will be known at a given time level. Once x is obtained
by solving (54), it is then straightforward to find W 2, v2, h, ρ0, P and ba. Then (54) is solved
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for x numerically using a combined Newton–Raphson and bisection solver. In practice, a
floor is placed on ρ0 and P , and a typical value for the floor is 10−10. OK... if this is
not messy enough, remember that in order to apply Godunov’s schemes, we at least need
the information of the eigenvalues/eigenvectors. In General Relativist MHD and employing
approximate Riemann solvers that only require the maximum characteristic speeds (like
HLLE) one is saved from calculating the speeds using that the maximum speed will be that
of light. However, higher order solvers or boundary conditions might require a complete
knowledge. At present there is not yet a full study of the characteristic structure of the
ideal GRMHD equations but work on this front is underway. However, there are a number
of situations where the curvature is fixed, or the problem can be treated by Newtonian
Mechanics and one “only” implements the ideal (relativistic) MHD equations. For these
cases, the characteristic structure is known [4]. For details refer to that paper, but the
characteristic speeds are roughly given by,

λe = vi ; λA

bi ±
√
Evi

bt ±
√
EW

(55)

with λe “entropic” waves, λA Alfven waves (E = ρh + b2) and another set known as “mag-
netosonic” waves. One can show that generically all λ’s < c. In particular, note that the
inclusion of magnetic effects implies that perturbations can propagate faster than the fluid
speed and so a perturbation at a particular portion of the fluid will affect other areas faster
than the “time-of-flight” allowed by the naive fluid motion . This can be seen from a “field
lines” point of view where the perturbation is connected to far regions through magnetic
field lines. Consequently, magnetic field effects can and do modify strongly the dynamics of
particular systems having important observational consequences beyond the “simple” medi-
ation or collimation expected from them. A particular example, for instance, is illustrated
in [5].

5 Wait a minute! where did my c go?

Ok... we have gone this far... didn’t we loose something along the way? We know Maxwell
equations describe propagation at the speed of light, however we just discussed the ideal
MHD equations, which involve them and we got speeds quite different from c, what in the
world happened?

Well, we took a strange limit, let us get back to the problem and examine it from an
agnostic point of view. (These notes are derived from [3]). To simplify the description, let’s
consider the special relativistic case so that we can forget curvature effects .

The Maxwell equations

The special relativistic Maxwell equations can be written as

∂bF
ab = Ia , (56)

∂ ∗

b F ab = 0 , (57)
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where F ab and ∗F ab are the Maxwell and the Faraday tensor respectively and Ia is the
electric current 4-vector. A highly-ionized plasma has essentially zero electric and magnetic
susceptibilities and the Faraday tensor is then simply the dual of the Maxwell tensor. This
tensor provides information about the electric and magnetic fields measured by an observer
moving along any timelike vector na, namely

F ab = naEb − nbEa + ǫabcBc . (58)

We are considering na to be the time-like translational killing vector field in a flat (Minkowski)
spacetime, so na = (−1, 0, 0, 0) and the Levi-Civita symbol ǫabc is non-zero only for spatial
indices. Note that the electromagnetic fields have no components parallel to na (i.e. Ea na =
0 = Ba na).

By using the decomposition of the Maxwell tensor (58), the equations (56)–(57) can be
split into directions which are parallel and orthogonal to na to yield the familiar Maxwell
equations

∇ · E = q , (59)

∇ · B = 0 , (60)

∂tE −∇× B = −J , (61)

∂tB + ∇× E = 0 , (62)

where we have decomposed also the current vector Ia = qna + Ja, with q being the charge
density, qna the convective current and Ja the conduction current satisfying Ja na = 0.

The current conservation equation ∂aI
a = 0 follows from the antisymmetry of the Maxwell

tensor and provides the evolution of the charge density q

∂tq + ∇ · J = 0 , (63)

which can be obtained also directly by taking the divergence of (61) when the constraints
(59)–(60) are satisfied.

The hydrodynamic equations

The evolution of the matter follows from the conservation of the stress-energy tensor

∂bT
ab = 0 , (64)

and the conservation of baryon number

∂a(ρua) = 0 , (65)

where ρ is the rest-mass density (as measured in the rest frame of the fluid) and ua is the
fluid 4-velocity. The stress-energy tensor T ab describing a perfect fluid minimally coupled to
an electromagnetic field is given by the superposition

Tab = T fluid
ab + T em

ab , (66)
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where

T ab
em ≡ F acF b

c − 1

4
(F cdFcd)g

ab , (67)

T ab
fluid ≡ huaub + p gab . (68)

Here h ≡ ρ(1 + ǫ) + p is the enthalpy, with p the pressure and ǫ the specific internal energy.
The conservation law (64) can be split into directions parallel and orthogonal to na to

yield the familiar energy and momentum conservation laws

∂tτ + ∇ · F τ = 0 , (69)

∂tS + ∇ · FS = 0 , (70)

where we have introduced the conserved quantities {τ,S}, which are essentially the energy
density τ ≡ Tabn

anband the energy flux density Si ≡ Tain
a, and whose expressions are given

by

τ ≡ 1

2
(E2 + B2) + h W 2 − p , (71)

S ≡ E × B + h W 2
v . (72)

Here v is the velocity measured by the inertial observer and W ≡ −nau
a = 1/

√
1 − v2 is the

Lorentz factor. The fluxes can then be written as

F τ ≡ E × B + h W 2
v , (73)

FS ≡ −EE − BB + hW 2
vv +

[

1

2
(E2 + B2) + p

]

g . (74)

Finally, the conservation of the baryon number (65) reduces to the continuity equation
written as

∂tD + ∇ · F D = 0 , (75)

where we have introduced another conserved quantity D ≡ ρW and its flux F D ≡ ρWv.

Ohm’s law

As mentioned above, Maxwell equations are coupled to the fluid ones by means of the
current 4-vector Ia, whose explicit form will depend in general on the electromagnetic fields
and on the local fluid properties. A standard prescription is to consider the current to be
proportional to the Lorentz force acting on a charged particle and the electrical resistivity η
to be a scalar function. Ohm’s law, written in a Lorentz invariant way, then reads

Ia + (Ib ub)ua = σ Fab ub , (76)

with σ ≡ 1/η being the electrical conductivity of the medium. Expressing (76) in terms
of the electric and magnetic fields one obtains the familiar form of Ohm’s law in a general
inertial frame

J = σ W [E + v × B − (E · v)v] + q v . (77)
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Note that the conservation of the electric charge (63) provides the evolution equation for the
charge density q (i.e the projection of the 4-current I along the direction n), while Ohm’s
law provides a prescription for the (spatial) conduction current J (i.e. the components of I

orthogonal to n).
It is important to recall that in deriving expression (77) for Ohm’s law we are implicitly

assuming that the collision frequency of the constituent particles of our fluid is much larger
that the typical oscillation frequency of the plasma. Stated differently, the timescale for
the electrons and ions to come into equilibrium is much shorter than any other timescale in
the problem, so that no charge separation is possible and the fluid is globally neutral. This
assumption is a key aspect of the MHD approximation.

The well-known ideal-MHD limit of Ohm’s law can be obtained by requiring the current
to be finite even in the limit of infinite conductivity (σ → ∞). In this limit Ohm’s law (77)
then reduces to

E + v × B − (E · v)v = 0 . (78)

Projecting this equation along v one finds that the electric field does not have a component
along that direction and then from the rest of the equation one recovers the well-known
ideal-MHD condition

E = −v × B , (79)

stating that in this limit the electric field is orthogonal to both B and v. Such a condition
also expresses the fact that in ideal MHD the electric field is not an independent variable
since it can be be computed via a simple algebraic relation from the velocity and magnetic
vector fields.

Summarizing: the system of equations of the relativistic resistive MHD approximation
is given by the constraint equations (59)–(60), evolution equations (61)–(63), (69)–(70) and
(75), where the fluxes are given by Eqs. (73)–(74) and the 3-current is given by Ohm’s
law (77). These equations, together with a equation of state (EOS) for the fluid and a
reasonable model for the conductivity, completely describe the system under consideration
provided consistent initial and boundary data are defined.

Elementary my dear Watson... the c gets lots in the limit! Different

limits of the resistive MHD description

At this point it is useful to point out some properties of the relativistic resistive MHD
equations discussed so far, to underline their purely hyperbolic character and to contrast
them with those of other forms of the resistive MHD equations which contain a parabolic
part instead. To do this within a simple example, we adopt the Newtonian limit of Ohm’s
law (77),

J = σ[E + v × B] , (80)

where we have neglected terms of order O(v2/c2), obtaining the following potentially stiff
equation for the electric field

∂tE −∇× B = −σ[E + v × B] . (81)
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Assuming now a uniform conductivity and taking a time derivative of Eq. (62), we ob-
tain the following hyperbolic equation with relaxation terms (henceforth referred simply as
hyperbolic-relaxation equation) for the magnetic field

− 1

σ
[∂ttB −∇2

B] = [∂tB −∇× (v × B)] . (82)

If the displacement current can be neglected, i.e. ∂tE ≃ ∂ttB ≃ 0, equation (82) reduces
to the familiar parabolic equation for the magnetic field

∂tB −∇× (v × B) − 1

σ
∇2

B = 0 , (83)

where the last term is responsible for the diffusion of the magnetic field. It is important
to stress the significant difference in the characteristic structure between equations (82)
and (83). Both equations reduce to the same advection equation in the ideal-MHD limit
of infinite conductivity (σ → ∞) indicating the flux-freezing condition. However, in the
opposite limit of infinite resistivity (σ → 0) Eq. (83) tends to the (physically incorrect) elliptic
Laplace equation ∇2

B = 0 while Eq. (82) reduces to the (physically correct) hyperbolic wave
equation for the magnetic field.

6 Geez what a mess! isn’t there anything I can do

without going nuts?

6.1 The force-free approximation

In the magnetospheres of the neutron stars or black holes the density of the plasma is so
low that even moderate magnetic fields stresses will dominate over the pressure gradients.
Mathematically, this means that the stress-energy tensor is mainly dominated by the elec-
tromagnetic part,

Tµν = T fluid
µν + T em

µν ≈ T em
µν (84)

which conservation law implies that the Lorentz force in negligible

∇νT
µν
em = −F µνIν ≈ 0 (85)

The last relation is known as force-free approximation.
The spatial projection of the force-free limit, written in terms of Eulerian observers, is

just
EkJk = 0 , qEi + ǫijkJjBk = 0 . (86)

By performing the scalar and the vectorial product with B of the last relation in the previous
equation (86), one can obtain that

EiBi = 0 . (87)

J i = q
ǫijkEjBk

B2
+ JB

Bi

B2
, (88)
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where JB ≡ JkBk is the component of the current parallel to the magnetic field. The first
relation implies that the electric and magnetic fields must be perpendicular while the second
defines the current up to the parallel component JB. By using the Maxwell equations on can
compute ∂t(E

iBi), which has to vanish due to the constraint (87). This condition imposes a
relation for JB, which can be substituted into (88) in order to complete the equation for the
current.

The charge density q can be removed from the evolved variables by using the constraint
divergence constraint on the electric field.

Finally, just mention that the characteristic speeds of the Maxwell equations in the force-
free limit are given by two Alfven waves and two magnetosonic waves, moving at the speed
of light.

PROBLEM 2.2. Derivation of the force-free current in a simple case. Take the
system of equations (59-62) and assume for simplicity q = 0. The force-free approximation
requires EḂ = 0, suppose we adjust that to be the case by a judicial initial data.

• Does the evolution equations imply this condition will remain satisfied?

• If it does not, how must one choose the current J so that this is the case?

6.2 A famous example: The Blandford-Znajek model

Motivated by nature of the powering of the AGNs, Blandford and Znajek studied the extrac-
tion of rotational energy from a spinning BH by means of the electromagnetic fields [?]. This
model assumes that the black hole is immersed on the electromagnetic fields produced by a
magnetized disk. If the field strength is large enough, the vacuum in unstable to production
of electron-positron pairs and thus a force-free region will be established. The rotation of the
BH induces a potential difference which will accelerate even a single electron (or positron) to
high enough energy to radiate gamma-ray photons by the curvature process. These photons
can create an electron-positron pair which will be accelerated again, leading to a cascade.
The time-averaged structure of this magnetosphere is described reasonable by the force-free
approximation.

We will follow [?] to summarize the BZ results. Recall that the Faraday tensor, in terms
of the four vector Aa obeys,

Fab = ∂aAb − ∂bAa , (89)

For a single black hole, assuming stationarity and axisymmetry (∂φ → 0 ; ∂t → 0) and that
the force-free condition EiBi = 0 is a good approximation to the situation of interest, one
can obtain rather simple expressions for the resulting EM flux of energy.

PROBLEM 2.3, show that

EiBi = 0 → ∗F abFab = 0 (90)

Using the expressions above, the vector potentials obeys

Aφ,θAt,r − At,φAφ,r = 0 . (91)
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One can now define a function ΩF (r, θ) such that

ΩF ≡ −At,r

Aφ,r

= −At,θ

Aφ,θ

, (92)

which can be interpreted as the “rotation frequency of the electromagnetic field”. Since the
poloidal field surfaces can be defined by Aφ = constant (i.e., it is a stream function for
the magnetic field), it means that ΩF and the electrostatic potential At are constant along
magnetic field lines. Notice that ΩF can also be written in terms of the Maxwell tensor,
namely

ΩF =
Ftr

Frφ

=
Ftθ

Fθφ

. (93)

Next, recall that the existence of a Killing field ξa implies a conserved quantity. defined
as Tabξ

a for each symmetry of the problem. Conservation implies,

∂b(ξaT
ab) = 0 . (94)

Since we have two killing fields ξa
(t) = (1, 0, 0, 0) and ξa

(φ) = (0, 0, 0, 1) the former defining the
electromagnetic energy E and the latter the electromagnetic angular momentum L.

PROBLEM 2.4, show that the radiated electromagnetic energy crossing a

spherical surface at a given radius is,

∂tE = 2π

∫ π

0

√−gFEdθ , withFE ≡ −T r
t (95)

PROBLEM 2.5, adopt Kerr-Schild coordinates, and show that the energy flux

density at the horizon r = r+ = rH is,

FE|r=rH
= 2(Br)2ΩF rH(ΩH − ΩF )sin2(θ). (96)

where rH = M +
√

M2 − a2 is the radius of the horizon and ΩH = a/(2MrH) is the frame
dragging frequency at the apparent horizon, usually interpreted as the rotation frequency of
the BH.

This result implies that if 0 < ΩF < ΩH and Br 6= 0, then there is an outward directed
energy flux at the horizon; rotational energy is being extracted from the black hole due to the
magnetic field lines threading the ergosphere and channeling particles through it. The use
of Kerr-Schild coordinates allow for direct computations of the flux at the horizon without
any special treatment.

Naturally, to get a particular solution one still needs to evaluate Br and ΩF , which
requires solving the Maxwell equations in the force-free approximation. Nevertheless the
qualitative features of this effect will remain unchanged.
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