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Motivation

e From time to time encounter time dependent PDEs in numerical relativity and
related fields that are “stiff”; i.e. whose solutions have a large dynamic range in
intrinsic time-scales (perhaps unbounded in the continuum limit)

e Frequently (but not always) these systems are of “parabolic” type

e Examples include

e Schrodinder equations appearing in treatment of Newtonian boson stars
e Certain type of coordinate conditions for lapse and shift (driver conditions)

e Geometrically-motivated PDEs other than Einstein's equations, e.g. Ricci
flow



Motivation

e Assume that finite difference (FD) techniques are being used: stiffness implies
that time-implicit methods will be needed to avoid unnecessarily stringent

restrictions on time step, At in terms of the spatial coordinate mesh spacings
Az*i=1,...d (assume Az’ = O(h) for all 7)

e Key goal: Assuming typical number of grid points per edge of spatial
computational domain is n ~ h™!, so that total number of points in spatial
mesh is N ~ n? want methods that can

1. Solve discrete equations with O(N) work per time step (optimal from
computational complexity point of view)

2. Allow for large time steps, i.e. At ~ h, especially if stiff equations are being
solved in concert with hyperbolic equations

e Multigrid techniques provide basis for such methods, and are applicable to
general systems of parabolic nature.

e To understand how this works, best to start with multigrid as applied to
time-independent PDEs, i.e. elliptic PDEs



Model elliptic problem

e Canonical model problem: 2-D Poisson equation

V2u(z,y) = Uge + Uyy = f(2,y)

on the unit square

with (homogeneous) Dirichlet boundary conditions

u(0,y) =u(l,y) =u(z,0) =u(x,1) =0

and f(x,y) a specified function



Discretization of model problem

Adopt uniform discretization: single, constant mesh spacing, h, in each

coordinate direction

Finite difference grid, Q", has n grid points in each direction, h = 1/(n — 1);

total number of points in discretization: N ~ n?.

Finite difference mesh points are defined by

{(xivyj) = ((i_l)hv (j_l)h)v ] = 172,---TL}

and adopt standard notation for grid function values, w;_;

Important note: Here and below will generally ignore treatment of boundary

(5)

conditions—in general need to be careful with their treatment when using MG,

particularly for case of non-Dirichlet conditions



Discretization of model problem

Replace the continuum system ([I]) with a discrete version

Here u" is the discrete solution, individual values denoted u; ;, L" is the
discrete approximation of the differential operator, L = 0, + 0,,, and fhis

Lyt = fh

the discrete source function

Need finite difference approximations for second derivatives u,, and wu,,

Use standard second-order, centred approximations:

uacac

Uyy =

_ Wit1,j — 22U+ Uio1,g

= 3

_ Uil — 2U 5 Uy

h2

+ O(h?)

+ O(h?)

(6)



Discretization of model problem

Get desired discretization of the Poisson equation:

U1, + W15 + Wi j+1 + Wi j—1 — 4U;

hQ

This equation may be applied at all interior points

Dirichlet boundary conditions provide (trivial) equations for boundary values on

discrete domain:

Ul = Un,j = Uil = Uin 1<,7<n

Discretization results in a large (!N x ), sparse linear system of equations:

Lu=f

(10)

(11)



Relaxation

Key idea for relaxation techniques intuitive

Associate a single equation, corresponding single unknown, u; ;, with each
mesh point in "

Then repeatedly “sweep” through mesh, visiting each mesh point in some
prescribed order

Each time point is visited, adjust value of unknown at grid point so
corresponding equation is ( “instantaneously” ) satisfied

Adopt a “residual based” approach to locally satisfying the discrete equations



Relaxation

Consider general form of discretized BVP
Ll = f" (12)

and recast in canonical form
F'"[u"] =o0. (13)

Quantity u” which appears above is the exact solution of the difference
equations

h

Can generally only compute u™ in the limit of infinite iteration

Thus introduce @": “current” or “working” approximation to u”, labelling the

iteration number by n, and assuming iterative technique does converges, have

lim @ = u" (14)

n—oo



Relaxation

e Associated with 4" is residual 7"

it = Lhah — " (15)

or in terms of canonical form ((13),

= Fh g (16)
e For specific component (grid value) of residual, fzhj drop the h superscript
fi,j — [Lh@h o fh]i,j = [Fh [ﬂ’th’,j (17)

e For model problem have

Fig =N (Qig1,j + Qie1,j + Qi1 + Gij—1 — 48i5) — fi ] (18)

e Relaxation: adjust u; ; so corresponding residual is “instantaneously” zeroed
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Gauss-Seidel relaxation

e (Gauss-Seidel relaxation: assuming lexicographic ordering of unknowns,
1=1,2,---n, 5 =1,2,---n, ¢ index varies most rapidly, residual is

Tij = h—? ( () pgint gl 4 oglnty 421(”-)) — Jij

Wit1,; 1—1,5 1,7+1 ,7—1 ]

and corresponding Gauss-Seidel update is

ﬂ/(n—|—1)

n ~(n+1 n ~(n+1
,;, (@, + Ty + al, +alnty — h2fiy)

»-lklr—‘

(19)

(20)
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Gauss-Seidel relaxation—convergence

e Solution of discrete system equivalent to driving residual vector r
~ h ~
r:=L"u—-f (21)
to 0

e Can write GS iteration in terms of action of (linear) operator (N x N matrix),
G

f,(n—i—l) _ Gf'(n) _ G2 f,(n—l) _ G3 f,(n—Q) = Gn—i-l f'(()) (22)

e Convergence can then be discussed in terms of spectrum of G, in particular will
want G to be a contraction map, so will want spectral radius of G , p(G), to
satisfy

p(G) <1 (23)
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Gauss-Seidel relaxation—convergence

e Heuristically at least, can think of eigenvectors of (G as having associated
frequency or, equivalently, wavelength as defined with respect to the mesh, Q"

e Rate at which given frequency component of the residual (™) is reduced by the
iteration is dependent on magnitude of corresponding eigenvalue

e Mode analysis (identical in spirit and implementation to Von Neumann analysis
for FD approximations to time-dependent PDEs) shows that, asymptotically,
convergence rate of GS iteration is dominated by slow convergence of lowest
frequency (longest wavelength) components, leading to

p(G) = 1—O(h?) (24)

so that it takes O(n?) sweeps (n is number of grid-pts per edge of Q") to
reduce the residual /solution error by any given constant factor

e Thus need O(N?) computational work to solve model problem
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lllustration of action of GS iteration for model
problem

e For illustrative purposes, specify continuum solution of model problem
u(z,y) = sin(wly) sin(nly) (25)
where [, l,, > 1 are integers, then compute corresponding source function

flayy) = -7 (5 + l;) sin(mly) sin(7l,) (26)

e Initialize solution to random values, uniformly distributed on [—1, 1], not least
since this will generate initial error/residual vectors with significant components
of all possible wavelengths; take [, =1 and [, = 2

e Following animations show action of GS iteration on solution, solution error and
residual, for relaxation sweep numbers

n=1,2,...127,128, 256,384, ...12800, 14080, 16440, ... 128000  (27)
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Effect of GS iteration on solution

Mox k5

-1.00e+00
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Effect of GS iteration on solution error

Al BT G B

-2.00e-03 2.00e-03
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Effect of GS iteration on residual

x5

rE______ N

-5.00e+00 5.00e+00
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Convergence of GS iteration—summary

e GS is an abysmal way of solving the discrete model problem (and discretized
elliptic systems in general), but a very good way of smoothing the system
(i.e. of reducing high frequency components in the solution error and residual)

| o
l . Qf

—— A=4h

e In particular, GS (and other relaxation schemes) very effective for reducing
error /residual components on Q" that cannot be represented on a 2:1 coarser
mesh, 22", i.e. that are above the Nyquist limit on Q?", i.e. with wavelengths,
A < 4h; generally takes some constant (i.e. h-independent) number of sweeps
to reduce magnitude of high-frequency components by given factor
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Multigrid
e Key ideas

1. Use relaxation to smooth residuals/error on "
2. As soon as required correction to solution is smooth, can compute a good

estimate for it via a coarse-grid problem, e.g. a problem on Q2"
3. Once coarse problem is satisfactorily solved, use the coarse solution to

update fine-grid unknown appropriately
4. Apply 1. to 3. recursively: use problem on Q*" to accelerate solution of

problem on Q2" Q8" problem to accelerate Q%" solution etc.
e Multigrid in a nutshell
e Use multi-scale (hierarchical) relaxation to efficiently smooth solution

error /residual on all frequency/wavelength scales

e To accomplish this, also need proper operators to transfer problems and
solutions from fine to coarse grids and vice versa; will not discuss these in any

detail here
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Multigrid

Use hierarchy of meshes Q" Q2h Q4 Q8" . (generally use 2:1 refinement
ratio for efficiency, algorithmic simplicity); label each distinct mesh spacing

with integer /¢
C=1,2,- lrax (28)

where £ = 1 and ¢ = /.« label coarsest and finest mesh spacings respectively

Thus have |
hg_|_1 = ihg Npg41 ~~ 2d Ty (29)

Use ¢ itself to denote resolution associated with a grid function, e.g. define u*

via
ut = uM (30)

Liu® = s (31)

where, apart from the finest grid problem, the source function, s*, will not
coincide with the “right hand side of the PDE", f*
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Pseudo-code of typical multigrid iteration (V' -cycle)

procedure vcycle (4, p, q)
Cycle from fine to coarse levels
dom =1/¢,2, —1
Apply pre-coarse-grid-correction (CGC) smoothing sweeps
do p times u™ := relax (u", s, h" ) end do
Set up coarse grid problem
[um~1, sl := setup_coarse (u™, s™, h™)
end do
Solve coarsest-level problem
u! := solve_coarse (u!, s, h!)
Cycle from coarse to fine levels
dom = 2,7, +1
Apply coarse-grid correction
u™ := update_fine (u"™, u
Apply post-CGC smoothing sweeps
do ¢ times v := relax (u™, s, h™ ) end do
end do
end procedure

m—l)
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Effect of MG iteration on solution

e Apply 5 V-cycles (p =1, ¢ = 2), using same random initial conditions as
previously

e t label measures relaxation work in units of fine-grid relaxation sweep
(dominant cost for MG algorithm)

b (6 i it

-1.00e+00 1.00e+00
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Effect of MG iteration on solution error

Al BT G B

-2.00e-03 2.00e-03
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Effect of MG iteration on residual

x5

rE______ N

-5.00e+00 5.00e+00
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Multigrid for time-dependent problems (at last!)

e Again, illustrate general technique using simple model problem: 2D diffusion
equation (heat equation) with homogeneous, Dirichlet boundary conditions

wg (t,2,9) = VU = Ugy + Uy (32)
on
N:0<z<1,0<y<1,t>0 (33)
with initial conditions
U(O,SE,Z/) — Uo(ﬂf,y) (34)

(ug specified) and boundary conditions
u(t,0,y) =u(t,1,y) = u(t,z,0) =u(t,z,1) =0 (35)
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Multigrid for diffusion equation

e Use fully-implicit O(h?) Crank-Nicholson approximation on uniform grid with
Ax = Ay = h, At = A\h (in abuse of terminology, will refer to A as “Courant

number")
n—+1
Wi g

n

— ut.

At

where

(V) 1 h n+1 h, n
_2(A + A" ;)

h —2
Alugj = h"" (i1, + o1y + Wigpr + w51 — 4w 5)

o Identify u'; = ulT", then (36)

’L j !

with

Ll = [At—l — %Ah]

e Now use multigrid to solve (

Is of the form

Lyt = fh

= [At_l + %Ah] u

38

) at every time step

2%

(36)

(37)

(38)

(39)
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MG solution of diffusion equation

e Initial data given by

uo(x,y) = exp (— ((z — 0.6) /0.05)* — ((y — 0.7) /0.10)2) (40)

e A\ = 0.0125: relatively small value chosen for purposes of animation

e Can use A = 1.0 or larger, but for such large values, accuracy of calculation
suffers considerably

513 x 513

0.00e+00
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Computational cost

e Compare with another technique that can be used to compute O(h?) implicit
approximate solution of diffusion equation in O(N) time: Alternating Direction

Implicit Method (ADI)

o From u; = Lu = (Oyy + Oyy)u have

u" ™t = exp (AtL) u” (41)
> At At
exp (—7L) u" Tt = exp <7L> u'" (42)

e Expanding to O(At?) = O(h?) accuracy, and denoting the usual O(h?)
approximation of L by L"

(1 - %Lh) u" = (1 + %Lh> u” (43)
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Computational cost

e Straightforward to show that last expression can be “factored” as

(1 - ﬁah ) (1 - gah ) (1 + gah ) ( Atah ) u" + O(h?)

(44)

where 97, and 0} are the usual O(h?) approximations of 9, and 9y,

e Can then solve (44) using alternating sweeps in = and y directions. Each sweep
requires the solution of n tridiagonal systems in n unknowns.

e Total cost is O(n?) = O(N)
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Scaling of computational cost for model problem

e Numerical experiments used n, —1 =n, —1=n—1 = 64, 128,256,512, 1024,

corresponding to discretization levels, £ = 1,2,3,4 and 5, with a number of

time steps, nt = 27 1n]

e Measured rate, R, of computation is kTcpu/(ningn,) where k is a normalizing

constant

e R should be constant for O(V) scaling

n | Rap1 | Rua
04 1.00 1.42
128 1.01 1.44
256 1.09 1.74
512 1.28 1.90

1024 | 1.15 2.10

e MG slowdown for larger N probably due to caching effects

30



Summary & comments

Multigrid methods can be used to solve time-dependent finite difference
equations in O(N) time (N = number of points in spatial discretization)

Most useful for PDEs that have “stiffness”, and thus generally require implicit
treatment to avoid need for unnecessarily small time steps (stability), bad
scaling of computational cost as h — 0

Have illustrated technique for simple model problem: even in this case
performance of MG compares favorably to ADI

However, in contrast to ADI and most other methods, MG readily generalizes to

e Evolution equations involving general elliptic operators on the RHSs (what
we encounter in general relativity, and other sets of geometric PDEs,
e.g. Ricci flow)

e Nonlinear equations

e Systems of equations

and O(N) performance can also be expected in these cases
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