
THE 3+1 EINSTEIN EQUATIONSThese notes rework the calculation of the 3+1 equations as presented in Kinematics and Dy-namics of General Relativity, by J. W. York, Jr., which itself is contained in the volume Sources ofGravitational Radiation, edited by L. Smarr. Many calculational details omitted from that sourceare included here.1) Foliations and NormalsAs before, we consider a spacetimeM with metric gab which is sliced into a foliation f�g de�nedby the isosurfaces of a scalar �eld � (the time parameter). Then the spacelike hypersurfaces are,at least locally, described by a closed one-form (dual vector �eld), 
a:
a = ra� : (1)Note that since 
a is the gradient of a scalar function, and ra is torsion-free, we haver[a
b] = r[arb]� = 0 : (2)The norm of 
a is given by gab
a
b = ���2 ; (3)where � is the lapse function, as previously. Thus we can construct the unit-norm dual-vector �eld,na, via na = ��
a = ��ra� ; (4)where the sign is chosen so that the associated unit-norm, hypersurface-orthogonal vector �eld, na,na = gabnb ; (5)is future-directed. Note that we can view na as the 4-velocity �eld of a congruence of observersmoving orthogonally to the slices (not necessarily coordinate-stationary). Such observers will havea 4-acceleration, ab given by ab = naranb : (6)2) The Projection Tensor and the Spatial MetricIn the derivation of the 3+1 form of the Einstein equations, we will necessarily be interested indecomposing various spacetime tensors into hypersurface-tangential (\spatial") and hypersurface-orthogonal (\temporal") pieces. Determining the \temporal" part of a tensor is straightforward, wesimply contract with na. York throws in a slight twist by introducing a relative minus dependingon whether a vector or covector index is being projected. Thus, for a vector �eld, W a, we de�neW n̂ = �W ana ; (7)and, in general, any upstairs n̂ index denotes that the original tensor index has been contractedwith �na. On the other hand, for a dual vector �eld, Wa, we de�neWn̂ = +Wana ; (8)1



and then any downstairs n̂ index denotes contraction with +na. To determine the spatial parts oftensors, it is convenient to introduce the notion of a projection tensor which, as the name suggests,projects tensors onto the hypersurface. The mixed form of this two-rank tensor is denoted ?ab andis de�ned by ?ab � �ab + nanb : (9)Note the relative \+" between the identity tensor and nanb which follows from the Lorenztiansignature on spacetime. By construction, we have? na �?ab nb = (�ab + nanb)nb = na � na = 0 ; (10)where we have also introduced the notation that a ? with no indices, operating on an arbitrarytensor expression, means apply the projection tensor to very free tensor index in the expression.Thus, for example ? Sabc �?ad ?eb ?fc Sdef : (11)Any tensor which has had all its free indices projected in this manner is called a spatial tensor. Itis worth emphasizing the rather obvious point that ? applied to any tensor expression of the form\tensor product of na (or na) and something else", vanishes. We will use this fact many times inthe following.If we apply the projection tensor to the spacetime metric gab itself (which is clearly the samething as lowering an index on the projection tensor) we get the (spatial) metric, 
ab, on the hyper-surfaces: 
ab = gab + nanb : (12)Similarly, the contravariant form of the spatial metric is given by
ab = gacgbd
cd = gab + nanb : (13)Note that all tensor indices continue to be raised and lowered with the spacetime metric, gab, andthat 
ab and 
ab are not inverses. (In fact, of course, the mixed form, 
ab, of the spatial metric isjust the projection tensor ?ab.) We also haveTr ? � ?aa = �aa + nana = 4� 1 = 3 : (14)Note also, however, that spatial tensors can equally well have their indices raised and lowered with
ab.3) The Spatial Derivative Operator and Curvature TensorWe can also use the projection tensor to de�ne a natural derivative operator, Da, for spatialtensors. Formally, we de�ne Da � ?ra ; (15)so that for a scalar �eld  , for example, we haveDa � ?ra = ?barb ; (16)while for a (spatial) vector �eld, W aDaW b � ?raW b = ?ca ?bdrcW d : (17)2



The action of Da on an arbitrary spatial tensor is then de�ned in the obvious fashion. Da is thenatural derivative operator for spatial tensors since it is compatible with the spatial metric, i.e.Da
bc = ?ra
bc = ?ra (gbc + nbnc) = ?ra (nbnc) = ?(ncranb + nbranc) = 0 : (18)Da
bc = 0 follows from an exactly parallel computation, or, more directly, simply by raising indices(using either metric!) on the above expression.The intrinsic curvature of the three-dimensional hypersurfaces is given by the Riemann tensorassociated with the spatial metric and is denoted Rabcd. It may be de�ned via its action on anarbitrary spatial dual-vector, Wa:(DaDb �DbDa)Wc = RabcdWd : (19)Rabcd is, of course, a spatial-tensor itself, and hence satis�esRabcd na = Rabcd nb = Rabcd nc = Rabcd nd = 0 : (20)In addition, Rabcd has the usual symmetries:Rabcd = R[ab]cd = Rab[cd] ; (21)R[abc]d = 0 ; (22)and Rabcd = Rcdab : (23)Finally, we can contruct the spatial Ricci tensor, Rab, and spatial Ricci scalar, R, in the usualmanner Rab = Racbc ; (24)R = Raa : (25)4) The Extrinsic Curvature TensorThe embedding of the slices in the spacetime is described by the extrinsic curvature tensor.Before de�ning this tensor and discussing its properties, we establish two useful results concerningderivatives of the normal vector �eld. The �rst of these is?r[anb] = 0 : (26)To see this, start from?ranb = (�ca + ncna)(�db + ndnb)rcnd= ranb + nancrcnb + nbndrand + nancnbndrcnd= ranb + nancrcnb (27)= ranb + naab ; (28)where we have used ndrand = ndrand = 12ra �ndnd� = 12ra (�1) = 0 ; (29)3



to eliminate the last two terms in the second line. We now consider each of the two terms of (27)in turn. Using (4), we haveranb = �ra (�
b) = � (ra�) 
b � � (ra
b) = � (ra�) 
b � � (rarb�) ; (30)so that r[anb] = �(r[a�)
b] : (31)Next, again using (4), we havenancrcnb = �2
a
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a ; (32)where we have used (2) in going from the second to third line, and (3) in going from the third tofourth. Thus, n[ancrcnb] = �(r[b�)
a] = +(r[a�)
b] ; (33)which, when combined with (31), immediately establishes (26) from (27).Our second useful preliminary result relates the 4-acceleration ab to the derivative of the lapsefunction. Speci�cally, we have ab = Db ln� : (34)To see this, we reexpress the right and left hand sides to show that they are indeed equal. On theone hand we have from (32), and again using (4),ab = ncrcnb = �
c (rc�) 
b + ��1rb� ; (35)while on the other we haveDb ln� =?cbrc ln� = (�cb + ncnb) ���1rc�� = �
c (rc�) 
b + ��1rb� : (36)Recalling our �rst preliminary result (26), we now de�ne the extrinsic curvature tensor, Kab:Kab = K(ab) = � ?r(anb) = � ?ranb : (37)Using this de�nition and (28), we haveranb = �Kab � naab ; (38)which rather explicitly displays the decomposition of the derivative of the normal �eld into ahypersurface-tangential piece|the extrinsic curvature, and a hypersurface-orthogonal piece|the4-acceleration.A de�nition of Kab which is equivalent to (37) can be made in terms of the Lie derivative alongthe normal vector �eld. Speci�cally, we haveKab = �12$n
ab = �12 ?$ngab : (39)4



To see this, we note that we have from (37) and (38)Kab = K(ab) = �(r(anb) + n(aab)) ; (40)while $n
ab can be written as$n
ab = ncrc
ab + 
cbranc + 
acrbnc= ncrc (gab + nanb) + (gcb + ncnb)ranc + (gac + nanc)rbnc= ncrc (nanb) +ranb +rbna= 2�r(anb) + n(aab)� = �2Kab ; (41)where we have used (29) (two times) in going from the second line to the third. Also,$ngab = ncrcgab + gcbranc + gacrbnc = ranb +rbna = 2r(anb) ; (42)and then Kab = �12 ?$ngab ; (43)follows immediately from (37). Finally, we note that since the extrinsic curvature is a spatial tensor,we of course have naKab = 0 : (44)This last result will also be used often in the sequel.5) The Gauss-Codazzi EquationsWe now begin computing projections of the 4-dimensional Riemann curvature tensor, Rabcd,starting with ?Rabcd. To this end, we �rst consider the 4-dimensional Ricci identity as applied toa spatial dual-vector, va:va?Rabcd =?(vaRabcd) =?(Rabcdva) =?(Rdcbava) =?(rdrcvb �rcrdvb) ; (45)where nava = 0 : (46)We have ?rcvb = rcvb + nbnfrcvf + ncnerevb + ncnenbnfrevf= rcvb � nbvfrcnf + ncnerevb � ncnbvfaf ; (47)where we have used (6) and nfrevf = �vfrenf ; (48)which follows from applying rb to (46). Continuing, we have?(rd ?rcvb) = DdDcvb = ?rdrcvb + ?rd �ncnerevb � nbvfrcnf � ncnbvfaf�= ?rdrcvb � ?(rdnb)(rcnf )vf= ?rdrcvb �KdbKcava ; (49)or ?rdrcvb = DdDcvb +KdbKcava : (50)5



Thus we have ?(Rabcdva) = ?(rdrcvb �rcrdvb)= DdDcvb �DcDdvb +KdbKcava �KcbKdava= (Rdcba +KdbKca �KcbKda) va= (Rabcd +KdbKca �KcbKda) va= va?Rabcd : (51)or ?Rabcd = Rabcd +KdbKca �KcbKda : (52)We now wish to compute ?Rabcn̂; applying the Ricci identity to na and projecting, we have?Rn̂bcd = ?(Rabcdna) =?(Rdcbana)= ?(rdrcnb �rcrdnb)= ?(rd(Kcb + ncab)�rc(Kdb + ndab))= ?(rdKcb �rcKdb + (rdnc �rcnd)ab)= ?(rdKcb �rcKdb)= DdKcb �DcKdb : (53)where we have used (38) in going from the second to third line and (26) in going from the fourthto �fth. Relabeling indices, and using the symmetries of Riemann, we have?Rabcn̂ = DbKac �DaKbc : (54)Equations (52) and (54) are known as the Gauss-Codazzi equations.6) The Constraint EquationsWe are now nearly ready to derive the constraint equations. We begin by noting that, as is easilyveri�ed, a generic type (0,2) symmetric tensor, �ab = �(ab) has the following 3+1 decomposition:�ab =?�ab � 2n(a?�b)n̂ + nanb�n̂n̂ : (55)We de�ne the following projections of the stress tensor, Tab� � Tn̂n̂ = Tabnanb ; (56)ja � ?T an̂ = � ?(T abnb) ; (57)Sab � ?Tab : (58)�, ja and Sab may be interpreted as the local energy density, momentum density and spatial stresstensor, respectively, as measured by observers moving orthogonally to the slices.We now consider ?Rab = ?(gcdRacbd)= ?(
cdRacbd) � ?(ncndRacbd)= ?(
cdRacbd) � ?Ran̂bn̂ : (59)6



Now, clearly, by the same argument that allowed us to write (45):va?Rabcd =?(vaRabcd) ; (60)where va is an arbitrary spatial vector, we have?(
cdRacbd) = 
cd ?Racbd = gcd ?Racbd : (61)Thus we �nd ?Rab = gcd ?Racbd � ?Ran̂bn̂ : (62)Now using the general 3+1 decomposition formula (55) for a symmetric tensor, we haveRan̂bn̂ =?Ran̂bn̂ � 2n(a?Rb)n̂n̂n̂ + nanbRn̂n̂n̂n̂ : (63)Since Rabcd is antisymmetric on its �rst two or last two indices, the last two terms in the abovedecomposition vanish, and we have ?Ran̂bn̂ = Ran̂bn̂ : (64)Contracting (62) and using this last result, we �ndgab ?Rab = �Rn̂n̂ + gabgcd ?Racbd : (65)We can derive another expression for gab ?Rab by starting from the 3+1 decomposition (55) appliedto Rab (and slightly rearranged):?Rab = Rab + 2n(a?Rb)n̂ � nanbRn̂n̂ : (66)Contracting, and using the fact that na?va = 0 for any dual-vector va, we �ndgab ?Rab = R+Rn̂n̂ : (67)Equating (65) and (67) and solving for R, we haveR = �2Rn̂n̂ + gabgcd ?Racbd : (68)Now consider the Einstein �eld equationsGab = Rab � 12gabR = 8�Tab ; (69)and contract both indices with the normal �eld, na, to produce what could be called the \purelytemporal" Einstein equation:Gabnanb = Rabnanb � 12gabnanbR = 8�Tabnanb ; (70)or, using (68) and (56)Rn̂n̂ + 12R = Rn̂n̂ + 12(�2Rn̂n̂ + gabgcd ?Racbd) = 12gabgcd ?Racbd = 8�� : (71)But from the �rst of the Gauss-Codazzi equations (52) we havegabgcd ?Racbd = gabgcd(Racbd +KabKcd �KadKbc) = R+K2 �KabKba : (72)7



where K � Kaa ; (73)is the trace of the extrinsic curvature tensor. Thus, we �nd from (71) and (72)R+K2 �KabKba = 16�� ; (74)which is known as the Hamiltonian constraint.We now consider the Einstein equation in the formGab = Rab � 12gabR = 8�T ab ; (75)and contract one index with �na (recall the convention given by equation (7)):Gan̂ = Ran̂ + 12naR = 8�T an̂ : (76)Projecting the remaining index onto the hypersurface and using the de�nition (57) of the momentumdensity, we have ?Gan̂ =?Ran̂ = 8� ?T an̂ = 8�ja : (77)Following a development precisely analogous to (61){(62), we �nd?Ran̂ = gcd?Racn̂d � ?Ran̂n̂n̂ = �gcd?Racdn̂ : (78)Using the second of the Gauss-Codazzi equations (54), this becomes?Ran̂ = �gcd (DcKad �DaKcd) = DaK �DbKab : (79)Raising the remaining free index we have (again recalling (7))?Ran̂ =?Gan̂ = DbKab �DaK : (80)Thus, we �nd DbKab �DaK = 8�ja ; (81)which is known as the momentum constraint.The crucial feature of the constraint equations (74) and (81), is that they involve only spatialtensors (including spatial derivatives of spatial tensors)|in particular, they do not involve explicittime derivatives of spatial tensors. Thus, these equations are equations of constraint which mustbe satis�ed by the fundamental 3+1 variables, 
ab and Kab at all times (i.e. on all slices).
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7) Time and Time DerivativesIn this section we establish some results concerning certain vector �elds and Lie derivativesalong these vector �elds. The idea here is to introduce su�ciently general notions of \time" and\time derivatives while maintaining a geometric approach.We �rst prove two results concerning Lie derivatives along the normal vector �eld, na, of spatialtype (0; l) tensors (spatial covariant tensors). The �rst result states that if Sa1a2���al is a spatialtensor, so that nai Sa1���al = 0 i = 1; 2; � � � ; l ; (82)then $nSa1���al is also a spatial tensor. Denoting the general type (0; l) spatial tensor by S we canthus write ?$nS = $nS : (83)The proof is straightforward. We have$nSa1���al = ncrcSa1���al + lXi=1 (rainc)Sa1���c���al : (84)Now contract the jth index with na:naj $nSa1���al = najncrcSa1���al + lXi=1 (rainc)najSa1���c���al : (85)Now, because Sa1���c���al is spatial, all of the terms in the sum (the \correction terms") vanish exceptwhen i = j (i.e. when the jth index of Sa1���c���al is being corrected. Also, we can use nai Sa1���al = 0to throw the derivative in the �rst term onto naj . Thus, we havenaj $nSa1���al = �ncrcnajSa1���al + ncrcnajSa1���al = 0 ; (86)and since this holds for arbitrary j = 1; � � � l, we have established (83). Our second result is that ifSa1a2���al is spatial, and f is an arbitrary function, then$fnSa1a2���al = f$nSa1a2���al (87)Again, the proof is straightforward:$fnSa1a2���al = fncrcSa1���al + lXi=1rai (fnc)Sa1���c���al= fncrcSa1���al + lXi=1 ((raif)nc + f (rainc))Sa1���c���al= f  ncrcSa1���al + lXi=1 (rainc)Sa1���c���al!= f$nSa1a2���al : (88)Below we will argue that the vector �eld, Na de�ned byNa = �na (89)9



is a natural orthogonal vector �eld with which to Lie-di�erentiate tensors in computing generaltime derivatives. This vector �eld has the important property that$N ?ab = 0 (90)which implies that if S is any spatial tensor (not necessarily type (0; l)), then $NS is also spatial:?$NS = $NS (91)To see that (91) follows from (90), note that for a general type (k; l) spatial tensor we haveSa1a2���ak b1b2���bl = ?a1c1 ?a2c2 � � � ?akck ?d1b1 ?d2b2 � � � ?dlblSc1c2���ckd1d2���dl (92)Now, applying $N to both sides of this expression, and using the Liebnitz rule, we easily see that,given (90), the only term which survives is the one where the Lie derivative acts on Sa1a2���ak b1b2���bl :$NSa1a2���akb1b2���bl = ?a1c1 ?a2c2 � � � ?akck ?d1b1 ?d2b2 � � � ?dlbl$NSc1c2���ckd1d2���dl ; (93)and this is precisely (91). It remains to show that (90) is true. We have$N ?ab = N crc?ab � ?cbrcNa + ?acrbN c= (�nc)rc (�ab + nanb)� (�cb + ncnb)rc (�na) + (�ac + nanc)rb (�nc)= �nancrcnb + �nbncrcna �rb (�na)� nbncrc (�na) +rb (�na) + nancrb (�nc)= �naab + �nbaa � �nbaa � nbnancrc�+ �nancrbnc � narb�= �na �ab � ��1 (rb�+ nbncrc�)�= �na �ab � ��1Db�� = �na (ab �Db ln�) = 0 : (94)where we have used (9), (89), (29) and (34).Now, recall that our foliation is de�ned by a closed one-form (dual-vector �eld), 
a:
a = ra� : (95)Since na = ��
a and 
a
a = ���2, we haveNa
a = 1 : (96)It is this normalization which makesNa the natural orthogonal vector �eld to use in computing \timederivatives" (i.e. for use in Lie di�erentiation). However, there is no justi�cation for restrictingattention only to \normal time derivatives" and, in fact, we can and will consider Lie di�erentiationalong other \time directions", ta, appropriately normalized viata
a = 1 ; (97)by adding to Na an arbitrary spatial vector �a (which is just the shift vector we have previouslydiscussed): ta = Na + �a = �na + �a ; (98)�ana = 0 : (99)10



8) The Evolution EquationsIn order to derive the 3+1 evolution equations, we have to compute the projection of one morepiece of the spacetime curvature tensor, namely ?Ran̂bn̂. Starting from the Ricci identity appliedto na and using (38) and (6), we have?Ran̂bn̂ = ?(nc (rbrcna �rcrbna))= ?(ncrc (Kba + nbaa)� ncrb (Kca + ncaa))= ?(ncrcKba + abaa � ncrbKca +rbaa) ; (100)Now, since ncKca = 0, we have �ncrbKca = rbncKca : (101)Thus, using this result, adding and subtracting rancKbc, and noting that from (37) we have� ?rancKbc = KacKbc, we �nd?Ran̂bn̂ = ?(ncrcKba +rbncKca +rancKbc �rancKbc + abaa +rbaa)= ?($nKab +KacKbc + aaab +rbaa) : (102)Now, using ab = Db ln�, we have?(aaab +rbaa) = ?�Da ln� Db ln�+rb ���1ra���= ?���2Da� Db�� ��2Db� Da�+ ��1 (rbDa�)�= ��1DbDa� = ��1DaDb� (103)(the torsion-free property of Da used in the last step follows directly from the torsion free proertyof ra.) In addition, using the two preliminary results (82) and (87) from the beginning of thissection we have ?$nKab = $nKab = ��1$NKab : (104)Using (103) and (104), (102) becomes?Ran̂bn̂ = ��1$NKab +KacKcb + ��1DaDb� : (105)8a) The Evolution Equations for the Spatial MetricThe evolution equations for the spatial metric are essentially identities which follow from thede�nition (39) of the extrinsic curvature:Kab = �12$ngab (106)However, as discussed above, for full generality, we wish to use Lie-di�erentiation along the vector�eld ta = Na + �a = �na + �a (107)as our \time derivative". Again using (87), as well as a fundamental property of the Lie derivativefor arbitrary vector �elds va and wa, and arbitrary tensor �elds S:$v+wS = $vS+ $wS ; (108)11



we have $t
ab = $N
ab + $�
ab= �$n
ab + $�
ab : (109)or $t
ab = �2�Kab + $�
ab : (110)8b) The Evolution Equations for the Extrinsic CurvatureWe �rst observe that the Einstein equationsGab = Rab � 12gabR = 8�Tab ; (111)may be contracted to yield G = �R = 8�T : (112)Thus, the �eld equations may be rewritten asRab = 8�Tab + 12gabR = 8� �Tab � 12gabT� : (113)Projecting onto the hypersurface, we have?Rab = 8��?Tab � 12
abT� : (114)Now from de�nitions (56){(58), as well as our expression (55) for the 3+1 decomposition of ageneral, symmetric, type (0; 2) tensor, we �nd?Tab � Sab = Tab + 2n(a?Tb)n̂ � nanbTn̂n̂ : (115)Contracting, we get S = T + Tn̂n̂ ; (116)or, using (56) T = S � � : (117)Thus, (114) becomes ?Rab = 8� �Sab � 12
ab (S � �)� (118)Now, from (62), we have ?Rab = � ?Ran̂bn̂ + gcd ?Racbd : (119)Using (52) and (105), this becomes?Rab = ����1$NKab +KacKcb + ��1DaDb��+ gcd (Rabcd +KabKcd �KadKcb)= ���1$NKab � 2KacKcb � ��1DaDb�+Rab +KKab : (120)Equating (118) and (120), and using$NKab = $t��Kab = $tKab � $�Kab ; (121)12



we solve for $tKab to get our evolution equations for the extrinsic curvature:$tKab = $�Kab �DaDb�+ ��Rab +KKab � 2KacKcb � 8� �Sab � 12
ab (S � �)�� : (122)We can derive an alternate version of this evolution equation which involves the \mixed" form, Kabof the extrinsic curvature, which has been used by several researchers in the past, and which wewill tend to use in the course. We start from��1$NKab � 2KacKcb � ��1DaDb�+Rab +KKab = 8� �Sab � 12
ab (S � �)� ; (123)and note that because all of the tensors appearing in this expression are spatial, we can raise indiceswith 
ab to get:��1
ac$NKab � 2KacKcb� ��1DaDb�+Rab +KKab = 8� �Sab � 12�ab + nanb (S � �)� : (124)Now $NKab = $N (
acKcb)= Kcb$N
ac + 
ac$NKcb= �Kcb$n
ac + 
ac$NKcb= �2�KcbKac + 
ac$NKcb ; (125)so 
ac$NKcb = $NKab + 2�KacKcb : (126)Substituting this result in (124) and using$NKab = $tKab � $�Kab ; (127)we �nd $tKab = $�Kab �DaDb�+ ��Rab +KKab + 8��12 ?ab (S � �)� Sab�� : (128)
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