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Abstract. In this paper we investigate the behaviour of maximum mass
for a stable boson star for several different self-interaction potentials. The
results are in agreement with those in the literature for λ|φ|4 and γ|φ|6

self-interaction potentials. We also find novel features for λ|φ|3 theory.
We started in this paper a search for a model rendering the maximum

collapse function, z = 2m(r)
r

, (also known in the literature as coefficient
of relativisticity). First, we investigated separately a series of different
polynomial self-interaction potentials from |φ|3 to |φ|6. Then we started
a survey of the coupling constants space. Rudimentary results for γ|φ|3 +
λ|φ|4is shown.

1. Introduction

The initial idea of boson star evolved from the pioneering work by John
Wheeler [1] on electromagnetic (EM) self-gravitating entities called geons. The
idea arises from considering the gravitational attraction effects that the mass
(energy) associated to an electromagnetic disturbance would be able to exert.
A sufficiently energetic electromagnetic disturbance would then give rise to a
gravitation attraction capable of holding the disturbance together for a long
time compared to any other characteristic time of the system. This type of
system was also found to require rotation to be stable. Kaup [2] picked up
on the geon concept and minimally coupled a massive complex scalar field to
general relativity rather than the EM field. Assuming a static spherically sym-
metric solution he found solutions to the coupled equations, which he called
Klein-Gordon geons. These solutions were later renamed boson stars (BS).

Following the work by Kaup, Ruffini and Bonazzola [3] showed that the
classical limit for the BS stress-energy tensor could be obtained by the mean
value of its quantum counterpart over the ground state vector for a system of
many particles. At zero temperature, all the bosons in the system will occupy
this ground state, forming a Bose-Einstein condesate (BEC). Then a BS is a
self-gravitating compact object (compact, in the sense that its radius is of the
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order of Schwarzschild radius) composed of a large number of scalar particles
in their ground state (BEC), and described classically by a complex scalar field
minimally coupled to gravity.

To date there exists no known fundamental scalar particle. Scalar fields,
however, hardly represent a revolution in cosmology as their existence has
been studied for quite some time. Examples are the inflation field, proposed
by Guth in 1981 [6] and the dilaton field which is the fundamental field in
bosonic string theory. There is of course a demand for the existence of the
massive Higgs boson, which is currently being sought by the particle physicists
[4]. Scalar particles have been proposed as a good candidate for, or at least as
a component making up a good fraction of, the dark matter in the universe.

Certainly, the study of the collapse of such a boson cloud of scalar particles
into a boson star could lead to a better understanding of astrophysical phe-
nomena. The field of gravitational lensing has achieved quite some maturity
in recent years and could be helpful in its detection as well as in the deter-
mination of its properties. Boson stars should exhibit distinct lensing effects,
some of which have already been determined. Finally, as another example of
astrophysical speculation, since boson stars could achieve a very large size,
they could offer an alternative to super black holes in galactic centers.

Despite all their possible astrophysical/particle physics applications, stud-
ies on boson stars are strongly motivated by the simplification that this mat-
ter model introduces in the system of equations when compared with their
fermionic counterparts. The dynamics of the scalar field is governed by a par-
tial differential equation (PDE), viz, the Klein-Gordon equation, that does
not develop any kind of singularity from a smooth initial data. Therefore,
there will not be any problems with shocks, low density regions, ultrarela-
tivistic flows, etc in the evolution of this kind of matter as opposed to fluids
(fermionic matter). Therefore, the scalar field becomes a tempting model to
investigate the strong-field dynamics of gravitationally compact objects and
to give us some insight about the dynamics of its fermionic counterpart.

Some features of both the fermionic and bosonic system can easily be no-
ticed from the start. For example, in spherical symmetry we can parameterize
the family of solutions by the modulus of the field at r = 0, the central field,
φ0, which is analogous to the central density for perfect fluid stars, governed
by the TOV equations and the ideal equation of state P = KρΓ

o . A noticeable
difference between the models though, shows up in the configuration of a bo-
son star in equilibrium. Its tail expands, in principle to infinity, unlike the tail
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on fluid model stars which have sharp edges.

The gravitational equilibrium of such gravitational solitons has already been
investigated but still raises lots of interest. Boson stars are prevented from
collapsing gravitationally by the pressure that stems from the Heisenberg un-
certainty principle. Like their fermion counterparts, neutron stars and white
dwarves, boson stars also have a limiting ADM mass below which the star is
stable against complete gravitational collapse into a black hole (BH). As for
the neutron star case (where the degeneracy pressure provided by the Pauli
exclusion principle provides the repulsive force), we can derive an expression
for the maximum possible mass. This turns out to be ∼ M3

pl/m
2, where Mpl

is the planck mass and m the scalar field mass, while the maximum mass of
a non-self-interacting boson star is ∼ M2

pl/m. This comes from the fact that
we can claim the boson particles within the star are confined to a region R,
and thus via the uncertainty principle we have p · R ∼ ~. For moderately
relativistic boson stars, p = mc, and so we get R ∼ ~/mc. Equating this to
the Schwarzschild condition, we have;

(1) R ∼
~

mc
=

2MmaxG

c2
→ Mmax ∼

M2
P l

m

The simplest variation of the standard boson star model generally consists of
adding self-interaction terms to the usual massive Klein-Gordon Lagrangian,
such as λ|φ4|, studied by Colpi et al. [5] and several others. As mentioned
before, stable stars are formed when there is a balance between all the forces
acting on its constituent matter. In this case it is a balance between the gravi-
tational force, Heisenberg’s uncertainty principle, and the attractive/repulsive
self interaction between constituent particles. So the size and mass of the star
greatly depends on the mass of the individual bosons, and on the effect of self
interaction terms. In principle, then boson stars can exist in a very wide size
range, from microscopic to cosmologically significant scales.

2. Overview

The aim of this project was to investigate boson stars with different effective
potentials arising from various models. The motivation was twofold; first, we
decided to extend the results for boson star maximal mass obtained by Colpi
et al. [5] to several other potentials. The list of potentials to work with were
initially based on the possible physical relevance that a particular potential
could have in the inflation scenario. Following the work by Schunck-Torres
[7], we implemented the cosh-Gordon, sine-Gordon and Liouville boson stars
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in order to look for any interesting behaviour of the maximal BS mass. As
we had problems in the implementation for all but the sine-Gordon, we then
decided to move on for polynomials potentials in |φ| since any exotic potential
can ultimately be expanded in a polynomial series.

We also originally intended to include the dilaton, but scrapped it because
being a real field, it would not satisfy our ansatz. Although this would be an
interesting potential to investigate, it was agreed that it would be best left
for another paper, and would likely follow the work performed by Gradwohl
and Kaelbermann [11]. Basically several of our potentials are also valid for
the real scalar field, but we choose to investigate the more general form of a
scalar field, since it has a stronger likelihood of physical realization, because
only complex scalar fields can carry charge.

We look at the basic massive Klein-Gordon model, the massive Klein-Gordon
model with γφ3 self interaction, the massive Klein-Gordon model with λφ4 self
interaction, and the massive Klein-Gordon model with ηφ6 self interaction.

We also investigate the massive Klein-Gordon model with γφ3 + λφ4 self
interaction. However these results are only preliminary. A full parameter
survey was not performed due to time constraints.

A desire to get new and exciting behaviour for the usual and general po-
tentials lead us to investigate the stability against collapse problem for those
polynomial potentials.

For a fluid star, the Schwarzschild limit is defined as the minimum coordinate
radius that a mass can have under static equilibrium. This is a well know result
that comes from the search for possible interior fluid sources for an external
Schwarzschild spacetime solution. In order to study the stability of a star
against gravitational collapse, a useful parameter, the collapse function (also
known in the literature as coefficient of relativisticity [8]) is defined as the ratio
of the Schwarzschild radius to the radius determined by the mass configuration
of the star, z = 2m(r)/r. Note that z = 1 defines the event horizon. Then
a necessary condition for a static solution is that z ≤ 1. From the condition
which states that the static Killing vector is time-like everywhere, a second
condition for a fluid static solution is imposed on z: z ≤ 8/9. As an example of
the consequence of this statement, when z reaches 8/9, for a star with uniform
density, the central pressure of the star would diverge to infinity.

The analogue for boson stars has not yet been established (except for the
obvious limit z ≤ 1). The main property investigated in this report, besides

the maximum mass for the systems, is the maximum z = 2m(r)
r

for each of the
potentials. This was then expected to produce, as an ultimate goal, a map of
the the maximum z as a function of the coupling coefficients for a particular
self-interaction potential. This value would correspond to the most compact
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static and stable boson star of all the potentials and most of its couplings
investigated so far.

We first look at the reason we expect a maximum mass for a given system.
To begin with the mass we are interested in calculating is the ADM (Arnowitt,
Deser, Misner) mass. The easiest approach to this is the use of the mass aspect
function, which comes from one of the metric components;

(2) ds2 = −

(

1 −
2m(r)

r

)

dt2 +

(

1 −
2m(r)

r

)

−1

dr2 + r2dΩ2

where m(r) above is the mass that the areal radius encapsulates. This metric
is used because we are expecting a spherically symmetric solution. Since we
demand asymptotic convergence with the Schwarzschild metric for our system,
we compare the above metric with;

(3) ds2 = (−α2 + a2β2)dt2 + 2a2βdrdt + a2dr2 + R2dΩ2

However with the static assumption, we have that β = 0. We further note
that the choice of polar slicing K = Kr

r and areal coordinates, b = 1, reduce
the problem of solving the Einstein-Klein-Gordon system to that of finding
one free parameter, the eigenvalue for the system.

The mass aspect function m(r) comes from the matching of the Schwarzschild
metric to the spherically symmetric metric as r → ∞;

(4)

(

1 −
2m(r)

r

)

−1

= a(r)2

which gives us our mass aspect function;

(5) m(r) =
r

2

(

1 −
1

a(r)2

)

.

In all stellar models we expect a continuum of solutions for any given central
density. However the most physically relevant stars will occur along the stable
branch, that is the stellar models that exist up to the maximum value on the
mass aspect function plotted against the central density. If we look at figure
2, we see the maximum mass exists at central density 0.08, so that central
densities less than this value will result in stable stars, central densities larger
than this value will result in unstable, oscillating stars, which are beyond
the focus of this paper. In many papers on this topic, this is the value they
were interested in calculating. Thus, several relationships were forged on this
idea, especially in the paper by Colpi et al., where an asymptotic relationship
between the maximum mass as a function of the self-interacting coefficient is
established. In this paper we re-enforce this relationship.

Based on a suggestion by Matt Choptuik, we needed to further investigate

another scalar property of the star, that is z = 2m(r)
r

. This quantity is simpler



6 BRUNO COUTINHO MUNDIM, ANDREW JASON PENNER, MARTIN SWIFT

to calculate than the mass aspect function;

(6)

(

1 −
2m(r)

r

)

−1

= (1 − z)−1 = a(r)2

so we are left with;

(7) z = 1 − a(r)−2

The idea behind this value for a given star model is that z, tells us the
gravitational effect of the star. z is expected to take on values between 0 and
1. As z approaches zero, the gravitational effects are minimized. However at
1, we have a coordinate singularity. (see equation 2) This tells us that the
star is the size of the event horizon, which in principle tells us that the star
with this value of z, would be the largest possible star with the given set of
parameters.

3. Formalism

First we must explain the basic equations of our system. We start with the
Lagrangian scalar with a general potential;

(8) Lφ =
1

2

(

∇µφ∇µφ
∗ + U(|φ|2)

)

with the stress energy tensor

(9) Tµν =
1

2

[

(∇µφ∇νφ
∗ + ∇νφ∇µφ

∗) − gµν

(

∇αφ∇αφ + U(|φ|2
)]

which taking the variation of the Lagrangian with respect to the field leads us
to the Klein-Gordon equation with a general potential;

(10) ∇µ∇µφ =
dU(|φ|2)

d|φ|2
φ

It is also important to note that we are using spherical symmetry, and a static
spacetime. With this we adopt an ansatz for our solution;

(11) φ(r, t) = φ(r)e−iωt

So with this information we get our equations of motion with general poten-
tials;

(12) a′ =
1

2

{

a

r
(1 − a2) + 4πar

[

a2U(φ2
0) +

ω2

α2
φ2

0a
2 + Φ2

0

]}

(13) α′ =
α

2

{

1

r
(a2 − 1) + 4πar

[

ω2

α2
φ2

0a
2 − a2U(φ2

0) + Φ2
0

]}
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Figure 1. The massive potential

(14) φ′

0 = Φ0

(15) Φ′

0 =

(

dU(φ2
0)

dφ2
0

−
ω2

α2

)

a2φ0 −
(

1 + a2 − 4πr2a2U(φ2
0

) Φ0

r

With the equations of motion established we are now free to investigate the
different potentials of interest. Note that a full derivation of the 3+1 equations
of motion may be found in the appendix.

4. Massive Boson

With the underlying physics explained we first look at the most basic as-
sumption, the massive, self interacting boson star. The potential for this case
is simply;

(16) U (|φ|) = m2|φ|2

For simplicity we can scale our problem so that mass is no longer considered
explicitly. Basically this has the same effect as setting the mass to m = 1.

This potential has been investigated in too many papers and thesis to list,
however the most recent that comes to mind in [10]. It produces fairly standard
results which we have reproduced, and may be seen in figure 2.

In figure 2 we obtain a maximum mass for the stable branch of the boson
star of 0.633 MCh, which corresponds to φo = 0.08. We, therefore, have an
analogue of the Chandresehkar mass limit, above which no static configuration
exists. This maximum mass is a relativistic effect, if this were a Newtonian
theory, there would be no such upper bound for the boson star. For this
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Figure 2. The total mass of a stable boson star as a function
of the field at the centre of the star. Here we clearly label what
we mean by φmax

potential we find that the stable solutions exist for φo < 0.08 and the rest are
unstable.

We see in the magnified section of the mass function in figure 3, that the
apparent plateau on the far right of the graph in figure 2, is actually comprised
of rapidly damping oscillations, which are of a very small amplitude, which
makes them difficult to see in most papers.

We have also included several fairly standard plots for the massive boson
star as a function of the areal radius r. Ultimately we see exactly what is
expected for all values of the central density, mass, lapse, and the collapse
function. See figure 4.

Furthermore, we look at the eigenfrequency as a function of central density,
no rescaling was performed. These plots are produced in figure 5.

There is one drawback to this potential, that it leaves us with the mass of
the individual boson particles on the order of the Planck mass. Since that
would be unphysical, this theory must be rejected as the true form for the
massive Boson star. The maximum z obtained for this particular theory is
0.22.

To determine the maximum value of z, for every value of the coupling coeffi-
cient, one has to run two sets of data. First of all, one must find the maximum
values of z for every φo, of which there will be one per value of central density
observed up to the maximum φo as described earlier. Then with these values,
one must select the maximum value in this data set. This value is considered
to be the maximum z for that particular value of the coupling coefficient. As
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Figure 3. The total mass of a stable boson star as a function
of the field at the centre of the star. The plots all show the same
data, and clearly indicate the self-similarity of the relation.

an observation we noted that this value of the maximum z, always coincided
with the maximum φo as associated with the maximum mass.

In the massive case with no self interaction terms, there is only one coupling
coefficient, the mass, which was scaled to unity.



10 BRUNO COUTINHO MUNDIM, ANDREW JASON PENNER, MARTIN SWIFT

Figure 4. The collapse function, z; mass aspect function,
m(r); and the scalar field, φ, as a function of areal coordinate
r. In all cases and the central field values are φ0 = 0.0155,
φ0 = 0.0075 and φ0 = 0.0055 from top to bottom. The m(r) plot
clearly displays the asymptotic nature of the mass as a function
of the areal coordinate. The z(r) plots also show that there is
a clear maximum z for each value of φ investigated. Finally in
the φ(r) plot we see the asymptotic tail which is characteristic
of the boson star, a feature which does not exist for the fermionic
star.
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Figure 5. The angular frequency as a function of the central density.
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Figure 6. The massive potential with Λφ4 self-interaction

5. λφ4 self-interaction

Shortly after the massive boson theory was proposed – and the basic flaw
pointed out – Colpi et el. reformulated the theory, modifying the potential
to include self interactions. The standard model used for the self interacting
scalar bosons is the λφ4 model. This model was likely selected since it is well
accepted among field theorists as a toy model. The physics behind it is well
understood, and it has a well defined ground state.

We investigated this model using our scaled equations, so we exchanged λ
for a new coefficient, Λ = λ/m2, which we again implemented by setting m = 1
for simplicity.

We should note that we chose a different definition for the coefficient λ than
used in the Colpi paper. Since the conversion factor can be absorbed into the
coefficients, we will disregard this in our analysis, treating λ the same as others
have. It is, however, important to note that a direct comparison between our
values and those from the original paper will require a conversion factor of 4π.

To solve this system we use the potential

U(|φ|2) = |φ|2 + Λ|φ|4

that can be seen in figure 6. In figure 7 we have a sample of the different Λ’s
investigated.

We encountered significant difficulty in obtaining ground state solutions to
the Klein-Gordon equation for values larger than 1600. The shooting method
used would have required such a small step size, that pursuing any higher
values of Λ would have been too computationally expensive.

With the data at hand we do find the interesting result that the z versus
Λ plot, seen in figure 10 shows asymptotic behaviour for large lambda, with
a maximum value for the gravitational effect for a star with this potential at
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Figure 7. The ADM mass as a function of central density for
the λ|φ|4 potential. From bottom to top, we have Λ = 0, 1, 10,
100

around z = 0.34. So, if we are interested in creating a highly relativistic boson
star, we can hardly be satisfied with this particular theory.

As discussed by Colpi et al., a boson star in the φ4 self-interacting model can,
unlike in the φ3, have a physically realistic boson mass. Our goal, however,
is not merely to find a sensible model, but also to search for one that has, as
mentioned, as relativistic a star as possible.

Earlier we had established a relationship between the maximum mass of the
massive boson star with no self-interactions in equation 1. One can further
establish a relation between the maximum mass of a boson star with self
interaction terms. For that, we must consider the relative strength of the
interaction terms. The only condition where the self-interaction terms are
really effective is when they are on the order of the mass term, ie when;

(17)
V (|φ|)

m2|φ|2
∼ O(1)

where V (|φ|) contains all the self-interaction terms. As is worked out in [9]
with the φ4 interaction, we have;

(18)
λ|φ|4

m2|φ|2
∼ O(1)
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Figure 8. Here we have the maximum mass of the boson star
as a function of the coupling coefficient. The solid line indicates
the asymptotic value of this theory at Λ1/2Mch The amplitude
of this asymptotic relation is 0.063, in exact agreement with the
Colpi results. It is also important to note that unlike the Colpi
paper, no data smoothing was applied.

so

(19)
Λ|φ|2

M2
P l

∼ O(1)

where we have made the substitution Λ = λM2
P l/m

2 and the |φ| ∼ m
instead of |φ| ∼ MP l as was the case in the no self-interaction potential. With
this we have that the radius is rescaled to be Rλ ∼ Λ1/2/m and the density
ρ = m2|φ|2 + λ|φ|4 and so the maximum mass becomes;

(20) Mmax = ρR3 ∼ Λ1/2M2
P l/m ∼ λ1/2MCh

In figures 9 and 10, we look at both positive and negative values for the
coupling coefficient. The positive coupling coefficients allow the φ4 theory to
be bounded, which may be seen in figure 6. However for the negative coupling
coefficient the potential is unbounded, which may be visualized by inverting
the function in figure 6. As expected for the unbound theory, the value of z
goes to zero, as the coefficient becomes very negative. This was interpreted
as the mass of each particle going to a value much less than the Planck mass,
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Figure 9. Here we have the value of the φmax at the location
of the maximum z for a given theory. It is important to note
that the location of the central density decreases as a function
of Λ which hinders our ability to assess the value of maximum
z, for large Λ, since for very large Λ the location of φmax will be
below our resolution of φo. The small cluster of points forming
the plateau on the curve is attributed to the resolution of our
step sizes in φ in solving the equations of motion.

since this would be an attractive theory between constituent particles and thus
the mass would be smaller than the Planck mass.

Since this process produces a particle which has an unrealistic mass, it must
also be discarded as a legitimate theory.

6. γφ3 self interaction

Unlike φ4 theory, this potential, shown in figure 11, has the drawback of not
being physically meaningful on its own. In the ultraviolet regime, the φ3 theory
is not renormalizable without being coupled to a higher order interaction such
as φ4.

On its own, it is still of great interest to field theorists as it also proves to
be a useful model for understanding quantum field theory, ignoring the above
mentioned caveat. In the case of boson stars, no one has yet done analysis of
potentials involving a complex φ3 term. This is treated in this paper without
any coupling, specifically for gaining insight into the system.
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Figure 10. Here we see the maximum z as a function of Λ for
the φ4 theory. We see something like an asymptotic relation for
large Λ.
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Figure 11. The massive potential with Γφ3 self-interaction

The form of the potential we used for this theory is;

(21) U(|φ|2) = |φ|2 + Γ|φ|3

where, similar to the previous treatment, the potential coefficient, Γ, is
rescaled to absorb constants and the mass term.

Consistent with the analysis of the φ4 model, we investigate both the mass
aspect function, and the maximum z as functions of the free parameter, φ0.
Again, we are looking for the highest possible value of the collapse function,
z, to get as relativistic a star as possible.
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Figure 12. The maximum mass as a function of the coupling
coefficient Γ. We do observe the linear asymptotic relationship
speculated for the φ3 theory. The slope of this relation is 0.025

We see in figure 14 that with a positive coupling constant, the value for z is
still smaller than in the φ4 theory and we need Γ to be negative to equal the
final value obtained in φ4 theory.

We have seen in equation 20 the relationship between the maximum mass
and the coupling constant. Based on the work done in [9], we speculate a
relationship between the maximum mass and the coupling constant for φ3

theory. The relationship appears to be of the form;

(22) Mmax = ρR3 ∼ C
1

n−2

n M2
P l/m

when we are dealing with φn theory, and Cn is the coupling coefficient for
that theory. So when we are looking at φ3 theory we expect an asymptotic
relationship;

(23) Mmax = ρR3 ∼ ΓM2
P l/m

Thus for a φ3 potential, we expect an asymptotic linear relationship between
the maximum ADM mass, and the coupling coefficient Γ.
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Figure 13. The value of φmax as a function of Γ. For the
positive coupling coefficient we note that φmax decreases as Γ
increases, tending to zero very quickly. However unlike the φ4

case, when we consider the negative coupling constant φmax in-
crease as |Γ| increases.

7. ξφ6 self interaction

Another possible self interacting theory is the ξφ6 potential. Since this the-
ory has a coefficient with a negative mass dimension, it is non-renormalizable.
However, unlike the odd powered potentials, this one, which can be seen in
figure 15, has a well defined ground state, and thus if we avoid the ultravi-
olet divergences, this theory stands a chance of being considered physically
meaningful.

The form of the potential used in this theory is;

(24) U(|φo|
2) = |φ|2 + ξ|φ|6

where again the potential is rescaled to absorb all constants and mass terms.
In good consistent form we investigate both the Mass aspect function, and

the maximum z as functions of the free parameter. Again we are looking for
a value of z that would allow for the star to be as large as physically possible.

We see in figure 18 that with a positive coupling constant, the value for z
is still not large enough to achieve this goal. However it is interesting to note
that on its own, this theory reaches values of z, which are larger than that
of φ4 theory. Again turning to the results in [9], we expect a maximum mass
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Figure 14. The maximum z as a function of Γ for the φ3 theory.
We see a rapid decrease of the maximum z as Γ increases. For
the value of maximum z with a negative coupling constant we
see a linear increase, with no clear indication of a maximum
value.
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Figure 15. The massive potential with ηφ6 self-interaction

relation;

(25) Mmax = ρR3 ∼ ξ1/4M3
P l/m

2

From figure 16, we see that, as mentioned in the case of both φ3, and φ4

theory, shown in figures 8 and 12, this asymptotic relation holds.
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Figure 16. The maximum ADM mass as a function of the cou-
pling coefficient ξ. Here we have an asymptotic relation for this
theory as Γ1/4. The amplitude for this asymptotic relationship
was found to be 0.09. This value disagrees with that found in
[9], however this is not unexpected since they admit to having
significant numerical errors in their obtained values.

Figure 17. The value of the maximum φ, as a function of ξ.
We see that the value of φmax decreases as |ξ| increase.
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Figure 18. The maximum z as a function of ξ. We see similar
behaviour to that of the φ4 theory. However in this case we were
able to observe a asymptotic limit for the maximum z ≈ 0.46.
This indicates that one may expect a similar limit for the φ4

theory.

8. 2 parameter survey

With the behaviour of the individual φn theories established, we now turn
to the more interesting problem of determining the behaviour of mixing these
theories. We do a small parameter survey of the U(|φ|) = Γ|φ|3 + Λ|φ|4

potential. This potential, shown in figure 19 has the form;
The resulting relationship between the maximum z, and the two coupling

coefficients are shown in figure 20. Unfortunately, due to time constraints, a
proper 2 dimensional mapping was not completed, and only preliminary results
were obtained.

In this plot we see that the mixing of these two potentials does not increase
the overall value of the maximum z. However from the investigation of the
individual theories one would not necessarily expect a large increase in maxi-
mum z, with the positive coupling coefficients on the φ3 term. It might have
been a little more fruitful to investigate the mixture of these two theories with
negative coupling coefficient on the φ3 term. However that will be left for a
later investigation.

We do see the general trend that for large values of Γ and small values of Λ
we see a decrease in the value of maximum z. However for large values of Λ we
find that the system is no longer significantly affected by the Γ contribution.
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Figure 19. The maximum z as a function of the coefficients Γ
and Λ, from the Γ|φ|3 + Λ|φ|4 potential.
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Figure 20. The maximum z as a function of the coefficients Γ
and Λ, from the Γ|φ|3 + Λ|φ|4 potential.

We also note oscillatory behaviour seen for small Γ. To determine if this is
a true feature of the system, we will have to investigate this system to much
higher resolution.
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9. Future Work and Conclusions

The conclusion of this report is that the investigation into the maximum
value of the collapse function revealed different values for different theories. It
would appear that an asymptotic limit exists for both the φ4 and φ6 theories.
Our data, however, does not indicate that there is any limit to the collapse
function for the negative φ3 potential. It is, therefore, easy to speculate that
the −|Γ||φ|3 + |Λ||φ|4 potential may produce a boson star with a maximum z
that approaches unity.

Broader applications of this research may extend to charged scalar fields,
where one must take into consideration the Maxwell interactions between the
scalar particles, so an extra repulsion term will be incorporated, minimizing
the required coupling of the self-interaction theories. Of course, one could
spend a lifetime re-investigating all the known theoretical potentials for scalar
stars, using this new approach to analysis.

As mentioned earlier a proper 2 parameter survey was not completed, and
for future work we would like to endeavor to finish this task, by surveying the
parameter space of positive Λ and both the positive and negative spaces for Γ
to verify our speculation.

This research could also be used to map out full relationships in the gener-
alized U(|φ|) =

∑

∞

i=2 Ci|φ|
i theory. Which would be expected to encapsulate

all possible potentials. Including the exotic cosh-Gordon, and sin-Gordon po-
tentials, as all analytic functions may be approximated to any accuracy using
Taylor series expansions.
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Appendix A. Derivations

We begin with an Einstein-Klein-Gordon system with a self-interaction potential

(26) Lφ = 1
1

2

(

∇µφ∇µφ∗ + U(|φ|2
)

and the stress energy tensor

(27) Tµν =
1

2

[

(∇µφ∇νφ∗ + ∇νφ∇µφ∗) − gµν

(

∇αφ∇αφ + U(|φ|2
)]

We vary the Lagrangian with respect to the field to obtain the equation of motion.

(28) ∇µ∇µφ =
dU(|φ|2)

d|φ|2
φ

Gauss-Codazzi equations (constraints to be satisfied at each slice)
(29)
(3)R+K2−KijK

ij = 16πρ ρ = Tµνnµnν DjK
ij−DiK = 8πja jµ = − ⊥ (T µνnν)

Line element in 3+1 form

(30) ds2 = (−α2 + βiβi)dt2 + 2βidtdxi + γijdxidxjw/tµ = αnν + βµ

Evolution equations

Ltγij = − 2αKij + Diβj + Djβi

LKij = − DiDjα + α

{

(3)Rij − 2KikKk
j − 8π[sij +

1

2
γ(s − ρ)]

}

+ βkDkKij + KikDjβ
k + KkjDiβ

k

where Sµν ≡⊥ Tµν and S = γijSij

Spherically symmetric spacetime

(31) ds2 = (−α2 + α2β2)dt2 + 2a2βdtdr + a2dr2 + r2b2dΩ2

(32) Ki
j = diag(Kr

r , Kθ
θ , Kθ

θ )

Non-vanishing components of the matter source terms: auxilliary filds

(33) Φ ≡ φ′ Π ≡
a

α
(φ̇ − βφ′)

ρ =
|Φ|2 + |Π|2

2a2
+

U(|φ|2)

2
jr = −

Π∗Φ + ΠΦ∗

2a
= a2jr

Sr
r = ρ + U(|φ|2) Sθ

θ =
|Π|2 − |Φ|2

2a2
−

U(|φ|2)

2

S =
3|Π|2 − |Φ|2

2a2
−

3

2
U(|φ|2)

EOM for complex scalar field with self-interaction potential U(|φ|2)
Hamiltonian Constraint:

R + 4Kr
rKθ

θ + 2Kθ
θ

2
= 8πρ

−2

arb

{

[

(rb)′

a

]

′

+
1

rb

[

(

rb

a
(rb)′

)

′

− a

]}

+ 4Kr
rKθ

θ + 2Kθ
θ = 8π

[

|Φ|2 + |Π|2

a2
+ U(|φ|2)

]
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Momentum constraint:

(34) Kθ
θ

′

+
(rb)′

rb

(

Kθ
θ − Kr

r

)

= 2π
Π∗Φ + ΠΦ∗

a

Evolution equations for the metric (γij) functions

ȧ = −αaKr
r + (aβ)′(35)

ḃ = −αbKθ
θ +

β

r
(rb)′(36)

Evolution equations for the extrinsic curvature Ki
j

K̇r
r = βKr

r
′ −

1

a

(

α′

a

)

′

+ α

{

−2

arb

[

(rb)′

a

]

′

+ KKr
r − 4π

[

2|Φ|2

a2
+ U(|φ|2)

]

}

K̇θ
θ = βKθ

θ

′

+
α

(rb)2
−

1

a(rb)2

[

αrb

a
(rb)′

]

′

+ αKKθ
θ − 4παU(|φ|2)

Evolution equations for the scalar field and auxiliary fields

φ̇ =
α

a
Π + βΦ(37)

Φ̇ =
(α

a
Π + βΦ

)

′

(38)

Π̇ =
1

(rb)2

[

(rb)2
(

βΠ +
α

a
Φ

)]

′

+ 2

[

αKθ
θ − β

(rb)′

rb

]

Π − αa
dU(|φ|2)

d|φ|2
φ(39)

Initial value problem in spherical symmetry polar-areal coordinates
Our ansatz is

(40) φ(r, t) = φ0(r)e
−iωt,

that is, we have a time dependent field producing a static metric Static spacetime: β = 0,
ȧ = 0 = ḃ then, from equations 35 and 36 we get that

(41) Kr
r = 0 and Kθ

θ = 0

From the ansatz in equation 40, it follows that

(42) φ̇ = −iωφ0(r)e
iωtφ′ = φ′

0e
−iωt

from which we find that

Π =
−iωa

α
φ0e

−iωtΦ = φ′

0e
−iωt(43)

With the ansatz and static spacetime, the momentum constraint is satisfied for all time ie
Π∗Φ + Φ∗Π = 0

(44) Kθ
θ

′

+
(rb)′

rb
(Kθ

θ − Kr
r ) =

2π

a
(Π∗Φ + ΠΦ∗)

The two parenthesis evaluate to zero, yielding

(45) Kθ
θ

′

= 0 =⇒ Kθ
θ = constant = 0

Polar-areal:
We have the slicing condition K = Kr

r , the spatial coordinate condition b = 1, the boson

star ansatz, timelike Killing vectors (β = 0) and a static spacetime (ȧ = ḃ = 0). Then the
metric becomes
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(46) ds2 = −α2dt2 + a2dr2 + r2dΩ2

From the slicing condition we see that

(47) Kr
r + 2Kθ

θ = Kr
r =⇒ Kθ

θ

so, again, we have that

(48) Kr
r = 0 and Kθ

θ = 0

to enforce polar slicings all the time, we, furthermore, require that Kθ
θ = 0

Hamiltonian Constraint:

−2

arb

{

[

(rb)′

a

]

′

+
1

rb

[

(

(rb)′

a
(rb)′

)

′

− a

]}

− 4Kr
rKθ

θ + 2Kθ
θ

2
= 8π

[

|Φ|2 + |Π|2

a2
+ U(|φ|2)

]

=⇒
−2

ar

{

(

1

a

)

′

+
1

r

[

( r

a

)

′

− a

]

}

= 8π

[

ΦΦ∗ + ΠΠ∗

a2
+ U(|φ|2)

]

=⇒
−2

ar

{

−
a′

a2
+

1

r

[

1

a
−

a′r

a2
− a

]}

= 8π

[

φ′

0
2
+ a2ω2

α2 φ2
0

a2
+ U(|φ|2)

]

=⇒
−1

ar

{

−a′ +
1

r

[

a − a′r − a3
]

}

= 8π

[

Φ2
0 +

a2ω2

α2
φ2

0 + a2U(|φ|2)

]

=⇒ − 2a′ +
a

r

[

1 − a2
]

= 4πar

[

Φ2
0 +

a2ω2

α2
φ2

0 + a2U(|φ|2)

]

=⇒ a′ =
1

2

{

a

r

[

1 − a2
]

+ 4πar

[

Φ2
0 + φ2

0a
2

(

ω2

α2
+

U(|φ|2)

φ2
0

)]}

=⇒ a′ =
1

2

{

a

r

[

1 − a2
]

+ 4πar

[

Φ2
0 +

ω2

α2
φ2

0a
2 + U(|φ|2)a2

]}

(49)

An example for a potential would be what is interpreted as the mass term U(|φ|2) =
m2|φ|2 = m2φ2

0.
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Solution of Kθ
θ (Applying slicing condition, BS ansatz and static spacetime) in polar coor-

dinates.

Kθ
θ = βKθ

θ

′

+
α

(rb)2
−

1

a(rb)2

[

αrb

a
(rb)′

]

′

+ αKKθ
θ − 4παU(|φ|2)

=⇒ 0 =
α

r2
−

1

ar2

[αr

a

]

′

− 4παU(|φ|2)

=⇒ 0 =
α

r2
−

1

ar2

[

(

α′

a
−

αa′

a2

)

′

r +
α

a

]

− 4παU(|φ|2)

=⇒ 0 = aα −

{[

α′r

a
−

rα

2a2

(

a

r
(1 − a2) + 4πar

(

a2U(φ2
0) +

ω2

α2
φ2

0a
2 + Φ2

0

))]

+
α

a

}

− 4παr2U(|φ|2)

=⇒ 0 = aα −

{

α′r

a
−

α

2a
(1 − a2) −

2πr2

a
α

(

a2U(φ2
0) +

ω2

α2
φ2

0a
2 + Φ2

0

)

α

a

}

−
4παr2

a
U(|φ|2)

=⇒ 0 = aα −
α′r

a
+

α

2a
−

αa

2
+ 2πr2αaU(φ2

0) +
2πr2α

a

(

ω2

α2
Φ2

0a
2

)

−
α

a
− 4παar2U(|φ|2)

=⇒ 0 =
aα

2
−

α′r

a
−

α

2a
+ 2πr2αaU(φ2

0) +
2πr2α

a

(

ω2

α2
φ2

0a
2 + Φ2

0

)

=⇒ α′ =
α

2r
(a2 − 1) + 2πrα

(

−a2U(φ2
0) +

ω2

α2
φ2

0a
2 + Φ2

0

)

=⇒ α′ =
α

2

{

1

r
(a2 − 1) + 4πr

(

ω2

α2
φ2

0a
2 − a2U(φ2

0) + Φ2
0

)}

(50)

(51) φ′ = Φ

From K-G-si equations:

(52) ∇µ∇νφ =
dU(|φ|2)

d|φ|2
φ

From equations 37, 38 and 39 we see that

φ̇ =
α

a
Π + βΦ =⇒ −iωφ0e

−iωt = −
α

a
iω

a

α
φ0e

−iωt

Φ̇ =
(α

a
Π

)

′

=⇒ −φ′

0iωe−iωt =

(

−
α

a

iωa

α
φ0e

−iωt

)

Π̇ =
1

(rb)2

[

(rb)2
(

βΠ +
α

a
Φ

)]

′

+ 2

[

αKθ
θ −

β(rb)′

rb

]

Π − αa
dU(|φ0|

2)

d|φ0|2
φ

From 43

(53) Π̇ = −
ω2a

α
φ0e

−iωt
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which gives us

ω2a

α
φ0e

−iωt =
1

r2

[

αr2

a
Φ

]′

− αa
dU(φ2

0)

dφ0
φ0e

−iωt

=⇒
ω2a

α
φ0 =

1

r2

[

αr2

a
Φ0

]′

− αa
dU(φ2

0)

dφ0
φ0

=⇒ αa
dU(φ2

0)

dφ2
0

φ0 −
ω2ar2

α
φ0 =

(

alpha

a

)

′

r2Φ0 +
α

a
2rΦ0 +

αr2

a
Φ′

0

=⇒
αa

r2

dU(φ2
0)

dφ2
0

φ0 −
ω2a

α
φ0 =

[

(

alpha

a

)

′

+
2α

ar

]

Φ0 +
α

a
Φ′

0

(α

a

)

′

+
2

r
=

α′

a
−

αa′

a2
+

2α

ra

=
α

2a

{

1

r
(a2 − 1) + 4πr

(

ω2

α2
φ2

0a
2 − a2U(φ2

0) + Φ2
0

)}

−
α

2a

{

1

r
(a2 − 1) + 4πr

(

ω2

α2
φ2

0a
2 + a2U(φ2

0) + Φ2
0

)}

+
2α

ra

=
α

a

a2 − 1

r
−

α

a
4πra2U(φ2

0) +
2α

ar

=
α(a2 + 1)

ar
− α4πraU(φ2

0)

α

a
Φ′

0 = αa
dU(φ2

0)

dφ2
0

φ0 −
ω2a

α
φ0 −

[ α

ar
(a2 + 1) − α4πraU(φ2

0)
]

Φ0

⇐⇒ Φ′

0 = a2 dU(φ2
0)

dφ2
0

φ0 −
ω2a2

α2
φ0 −

[

1 + a2 − α4πr2a2U(φ2
0)

] Φ0

r

⇐⇒ Φ′

0 =

(

dU(φ2
0)

dφ2
0

+
ω2

α2

)

a2φ0 −
[

1 + a2 − α4πr2a2U(φ2
0)

] Φ0

r
(54)

To summarize: The set of equatins to be integrated ar then

a′ =
1

2

{

a

r
(1 − a2) + 4πar

[

a2U(φ2
0) +

ω2

α2
φ2

0a
2 + Φ2

0

]}

(49)

α′ =
α

2

{

1

r
(a2 − 1) + 4πar

[

ω2

α2
φ2

0a
2 − a2U(φ2

0) + Φ2
0

]}

(50)

φ′

0 = Φ0(51)

Φ′

0 =

(

dU(φ2
0)

dφ2
0

−
ω2

α2

)

a2φ0 −
(

1 + a2 − 4πr2a2U(φ2
0

) Φ0

r
(54)

Regularity and boundary conditions: In order to make equation 49 regular at the origin the
limit

(55) lim
r→0

a

r
(1 − a2) = const.
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One way to achive this is to set a(0) = 0 or a(0) = ±1. The first regularity contidion should
be ruled out since we want all the sperically symmetric metric functions to be positive. We
choose to use a(0) = 1
A regular function at the origin has the following series expansin:

(56) lim
r→0

a(r) = a0 + a2r
2 + . . . =⇒ a(0) = a0 = 1

Then

(57) a(0) = 1 Φ0(0) = φ′

0(0)

and the outer boundary condition for the field becomes

(58) lim
r→∞

φ0(r) = 0

For the b.c. for α, we need to evaluate the mass aspect function, which is done in the next
section (see equation 61).
Mass aspect function
Polar-areal metric (b = 1, β = 0):

(59) ds2 = −α2dT 2 + a2dR2 + R2dΩ2

When R → ∞ we expect the metric to approach the usual Schwarzschild metric:

(60) ds2 = −

(

1 −
2M

R

)

dT 2 +

(

1 −
2M

R

)

−1

dR2 + R2dΩ2

We define the mass aspect function such that
(

1 −
2M(T, R)

R

)

−1

≡ a2(T, R) =⇒ M(T, R) =
R

2

(

1 −
1

a2(T, R)

)

The outer boundary for α(T, R) can be derived by noticing that:

lim
R→∞

α2(T, R) ≡

(

1 −
2M

R

)

1

a2

=⇒ lim
R→∞

α(T, R) =
1

a(T, R)
(61)

As equation 50 is linear in α we can convert the outer boundary condition, 61, for α int an
inner one. After choosing α(0) = 1 and integrating equations 49, 50, 51 and 54, we have to
rescale α as well as ω so that

(62) α(Rmax) → cα(Rmax) =
1

a(Rmax)
=⇒ c =

1

α(Rmax)a(Rmax)

In the equations 49 to 54 it’s clear tat we have to resccale ω since

(63)
ω2

α2
→

c2ω2

c2α2
=

ω2

α2

Thus, it won’t change the eigenvalue problem!

ω → cω

α → cα


