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Introduction to Boson Star (BS)
• What is a boson star?

• Historical perspective
• Wheeler (1955): GEONS, electromagnetic self-gravitating entities
• Kaup (1968): Klein-Gordon geons, a minimally coupled massive complex

scalar field to general relativity (rather than the EM field)
• Ruffini and Bonazzola (1969): showed that the classical limit for the BS

stress-energy tensor could be obtained by the mean value of its quantum
counterpart over the ground state vector for a system of many particles.
At zero temperature, a large fraction of the total number of bosons in the
system will occupy this ground state (BEC). The link between the
quantum mechanics treatment of bosons and the classical view of scalar
fields were then established.

• BS is a self-gravitating compact object (compact in the sense that its radius
is of the order of Schwarzschild radius) composed of a large number of scalar
particles in their ground state (BEC), described classically by a complex
scalar field minimally coupled to gravity.
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Introduction to Boson Star (BS)
• Why are BS interesting?

• Particle interest: there exists no known fundamental scalar particle up to
date. BS would be then our cosmological lab.

• Cosmological/Astrophysical interests:
• Inflation field is a scalar field. Stars resulting from those fields may have

played an important role in the inflationary period.
• Scalar particles have been proposed as a good candidate for the dark

matter in the universe.
• Since boson stars could achieve a very large size, they could offer an

alternative to super black holes in galactic centers. Boson stars should
exhibit distinct lensing effects of which could be helpful in its detection
and determination of its properties.

• Certainly the studies of the collapse of such a boson cloud of scalar
particle into boson star would lead to a better understanding of the
astrophysical phenomena.

• OUR MAIN INTEREST: to investigate the strong gravitational field regime
through numerical relativity.
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Motivation
• Why are scalar fields a tempting matter model candidate for studying the

strong field regime?

• A massive complex field is chosen as matter source because it is a simple
type of matter that allows a star-like solution and because there will be no
problems with shocks, low density regions, ultrarelativistic flows, etc in the
evolution of this kind of matter as opposed to fluids

• The fermionic and bosonic system share some general features from the
beginning: for example, in spherical symmetry we can parameterize the
family of solutions by the modulus of the field at r = 0, the central field, φ0,
which is analogous to the central density for perfect fluid stars.

• It’s a good candidate for studying systems where the details of the dynamics
of the stars (e.g. shocks) tend not to be important gravitationally, as for
example, in binaries of compact stars. Boson star binaries then may provide
some insight into neutron star ones.
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Motivation
• What properties of boson stars are we going to focus on?

• Short answer: Their gravitational equilibrium described by two parameters:
the maximal stellar mass and its collapse function.
• Boson stars are prevented from collapsing gravitationally by the pressure

stemmed from the Heisenberg uncertainty principle. Like their fermion
counterparts, neutron stars and white dwarves, boson stars also have a
limiting ADM mass below which the star is stable against complete
gravitational collapse into a black hole (BH).

• As for the neutron star case (where the Pauli exclusion priciple provides
the degeneracy pressure), we can also derive an expression for the
maximum possible mass. This turns out to be ∼ M3

pl/m2, where Mpl is
the planck mass and m the scalar field mass, while the maximum mass of
a non-self-interacting boson star is ∼ M2

pl/m.

• Colpi et al. added a self-interacting potential of the form λ|φ4|. Their
results showed actually that a BS could have a size and mass of the order
of their fermionic counterpart ∼ λ1/2M3

pl/m2.
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Motivation
• OUR MAIN MOTIVATION 1: generalize the work done by Colpi at al. for

other preferably fancy potentials and look for some interesting behaviour for
the maximal stellar mass as the parameters (couplings) of the model changes.

• OUR MAIN MOTIVATION 2: answer the question: what is the most compact
stable boson star model?

• For a fluid star, the schwarzschild limit is defined as the minimum coordinate
radius that a mass can have under static equilibrium. It is well know result
coming from the search for possible interior fluid sources for an external
Schwarzschild spacetime solution.

• It can be described by its collapse function, that for a static configuration of
a fluid star is bounded to 8/9:

z =
2m(r)

r
≤ 8/9 (1)

• We would like to find then a analogous upper bound for boson stars (apart
from the obvious z ≤ 1) for a class of different types of self-interacting
potencials and obtain a map of the the maximum z as a function of the
coupling coefficients for a particular self-interaction potential.

• This value would correspond then to the most compact static, stable boson
star
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Formalism
We begin with an Einstein-Klein-Gordon system with a self-interaction potential

Lφ = 1
1
2

(
∇µφ∇µφ∗ + U(|φ|2

)
Tµν =

1
2

[
(∇µφ∇νφ

∗ +∇νφ∇µφ∗)− gµν

(
∇αφ∇αφ + U(|φ|2

)]
∇µ∇µφ =

dU(|φ|2)
d|φ|2

φ

The metric used

• In a spherically symmetric spacetime with timelike Killing vectors, the metric is
of the form

ds2 = −α2dt2 + a2dr2 + r2b2dΩ2

The Choice of Slicing

• We choose the polar slicing and the areal coordinate condition.

K = Kr
r and b = 1
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Formalism
The Ansatz

• We demand that the spacetime be dependent.

• Complex scalar field must then be on the form

φ(r, t) = φ0(r)e−iωt

The Equations of motion

For the system laid out we derive the equations of motion which form a set of
ODE’s

a′ =
1
2

{
a

r
(1− a2) + 4πar

[
a2U(φ2

0) +
ω2

α2
φ2

0a
2 + Φ2

0

]}
α′ =

α

2

{
1
r
(a2 − 1) + 4πar

[
ω2

α2
φ2

0a
2 − a2U(φ2

0) + Φ2
0

]}
φ′0 = Φ0

Φ′0 =
(

dU(φ2
0)

dφ2
0

− ω2

α2

)
a2φ0 −

(
1 + a2 − 4πr2a2U(φ2

0

) Φ0

r
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Formalism
Defining the Mass of a Star

• Before starting to look for the maximum mass of the star, we need to define
what we mean by mass.

• We define the mass of the star to be the ADM mass at infinity.

• At infinity, our metric approaches the Schwarzschild metric

ds2 = −
(

1− 2M

R

)
dt2 +

(
1− 2M

R

)−1

dt2 + r2dΩ2

• From the metric of our model, we can get the mass aspect function from the
metric tensor function, a(r), at infinity by comparing terms

m(r) =
r

2

(
1− 1

a2

)

• We now get the ADM mass from the mass aspect function evaluated at infinity

M = lim
r→∞

m(r)
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Formalism
Defining the Collapse Function (CF)

• One of the things that we are interested in is the compactness of a star

• The compactness of a star can be expressed in the fraction

z =
2m(r)

r

• This fraction is called the collapse function

• CF is the ratio of the Schwarzschild radius to the coordinate radius.

• At an event horizon, z = 1.

• The compactness can now be easily found by z = 1− 1
a2

Comparison With a Fluid Star

• As mentioned BS’s are similar to FS’s in many ways.

• FS’s have an upper bound on CF: z ≤ 8
9
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Choice of BS models
There is a great big sea of potentials for scalar fields to choose from. The bare
minimum that we are interested in is the mass term

U(|φ|2) = m2|φ|2

For further analysis, we considered potentials that would be added to the mass
term

• We briefly investigated αm2[cosh(|φ|)− 1] and αm2[sin(π
2 [β|φ| − 1]) + 1].

Both worked, but didn’t handle well as it was difficult to gain insight into them
analytically.

• We also considered the dilaton case. Since the dilaton is a real field, it cannot
obey our ansatz and is unable to carry charge.

• Whatever the interaction, it can be expanded as a power series in |φ|.

• Our strategy is to look at several powers terms separately and then try to
explore combinations of those.

• Investigation completed on the φ3, φ4 and φ6 potentials

• Preliminary results for the φ3 + φ4 potential
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Massive Boson Star
• Total Mass versus Central Field
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Massive Boson Star
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Massive Boson Star
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Massive Boson Star
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Maximum Mass Versus Coupling Coefficient
• There is a known asymptotic relationship between the maximum mass of the

stable boson star, and the coupling constant

R ∼ 1/m → Mmax ∼ M2
Pl/m (2)

• which is the relationship developed for a moderately relativistic massive KG
boson star

• However if we consider a system with self interactions, and presumably
independent coupling constants, we have a slightly more complicated form of
the relation.

• The importance of the interaction potential is measured by the ratio

V (φ)
m2|φ|2

(3)

• V contains only the self interacting terms, no explicitly mass dependent terms
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A quick example

• So for say the φ4 potential we have the ratio

λ|φ|4

m2|φ|2
(4)

λ|φ|4

m2|φ|2
∼ Λ

|φ|2

M2
Pl

∼ O(1) (5)

• where we define Λ = λM2
Pl

m2 .

• Effectively we have rescaled the mass m → Λ−1/2m

• The radius is now Rλ ∼ Lambda1/2

m

• Then we are left with the field |φ| ∼ m

• With this we have that Mmax
λ ∼ Λ1/2M2

Pl
m the asymptotic relationship for φ4

theory.

17



Maximum Mass Versus Coupling Coefficient φ4

• the amplitude for the above relationship is 0.063, which agree exactly with
Colpi’s results
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Maximum Mass Versus Coupling Coefficient

• Similarly we can have a maximum mass for a φ6 theory

• With this we have that Mmax
η ∼ η1/4M2

Pl
m the asymptotic relationship for φ6

theory.
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• here the amplitude for the above relationship was found to be 0.09
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Maximum Mass Versus Coupling Constant

• For a general polynomial potential we have;

U(|φ|) =
N∑

n=1

Cn|φ|n (6)

• Since these Maximum mass relationships appear to have the trend

Mmax ∼ C
1/(i−2)
i

M2
Pl

m

• when they are investigated without other interactions present. We thought we
would investigate this for i=3 to find that we expect a linear asymptote.
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Maximum Mass Versus Coupling Constant

• the above asymptote has a slope of 0.025
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Collapse Function

• For the second part of our investigation we look at the collapse function,
z = 2m(r)

r

• Where for one specific value of φo we select the maximal value of z to represent
this distribution

• This is repeated for all values of φo up to and including the value φmax
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φmax
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Collapse Function

• Gathering all the maximal z values for each phi, and again recording only the
largest z for that particular value of the coefficient we are left with (for φ4 self
interaction);
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Collapse Function

• and for φ3 self interaction
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Collapse Function

• then for φ6 self interaction
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2 Parameter Survey - Preliminary results
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Future Work

• A more detailed survey over the parameter space

• Possible extension to negative coupling constant in φ3 + φ4 parameter survey

• Extension to a φ4 + φ6 self interaction theory

• We could also apply this analysis to charged boson stars
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