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General Motivation
• Why study compact binaries?

• One of most promising sources of gravitational waves

• It is a good laboratory to study the phenomenology of strong gravitational
fields

• Why boson stars?

• Plunge and merge phase of the inspiral of compact objects is characterized
by a strong dynamical gravitational field. In this regime gross features of
fluid and boson stars’ dynamics may be similar

• Since the details of the dynamics of the stars (e.g. shocks) tend not to be
important gravitationally, boson star binaries may provide some insight into
NS binaries

• Development of a computational infrastructure for 3D codes

• 3D numerical relativistic calculations are computationally very expensive.
Need for more efficient computational techniques: AMR, parallelization.
• This infrastructure has been constructed by Frans Pretorius: PAMR
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GR in a nutshell
The notion of distance between two points in a Riemannian manifold or the
interval between two events in a Lorentzian manifold is encoded on the metric
tensor:

g ≡ ds2 = gµνdx
µdxν (1)

Examples - Vacuum spacetimes:

• Minkowski/Flat spacetime in cartesian coordinates:

ds2 = −dt2 + dx2 + dy2 + dz2 (2)

• Schwarzschild spacetime in spherical coordinates:

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (3)

where dΩ2 = dθ2 + sin2 θdφ2
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GR in a nutshell
• The notion of force (Newtonian gravity) is replaced by the notion of curvature.

• Matter/Energy is responsible for spacetime curvature. In Wheeler’s words:

• “Matter tells spacetime how to curve and spacetime tells matter how to
move.”

• Einstein Field Equations:
Gµν = 8πTµν

• System of non-linear, time-dependent, partial differential equations

• No analytic solution except in special cases

• Solution for most relevant astrophysical scenarios must be constructed
numerically

• Its tensorial nature gives rise to several different formalisms

• ADM / 3 + 1 formalism: slice spacetime in spacelike hypersurfaces; use
Einstein equations to evolve in time the 3-geometry of an initial hypersurface
in order to construct the spacetime (i.e. the 4-dimensional metric, gµν)
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3+1 formalism
• 3+1 line element

ds2 = −α2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)

α

β

(t,x )i

(t+dt,x )        i (t+dt,x +dx )         i         i

dt

Σ(t+dt)

Σ(t)

Qp’’dtip’

p

A schematic representation of the ADM (or 3+1) decomposition
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3+1 formalism
• Constraint Equations: From G0i = 8πT0i, which do not contain 2nd time

derivatives of the γij

• Hamiltonian Constraint

R+K2 −KijK
ij = 16πρ (4)

where R is the 3-dim. Ricci scalar, and K ≡ Ki
i is the mean extrinsic

curvature.

• Momentum Constraint
DiK

ij −DjK = 8πji (5)

• Evolution Equations: From definition of extrinsic curvature, Gij = 8πTij, and
Ricci’s equation.

Ltγij = Lβγij − 2αKij (6)

LtKij = LβKij −DiDjα+ α
(
Rij +KKij − 2KikK

k
j

)
−

8πα(Sij −
1
2
γij(S − ρ)) (7)
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Matter Model: Scalar Field
• Star-like solutions: A massive complex field is chosen as matter source because

it is a simple type of matter that allows a star-like solution and because there
will be no problems with shocks, low density regions, ultrarelativistic flows, etc
in the evolution of this kind of matter as opposed to fluids

• Static spacetimes: Complex scalar fields allow the construction of static
spacetimes in opposition to real scalar fields. The matter content is then
described by:

Φ = φ1 + iφ2 (8)

where φ1 and φ2 are real-valued

• The Lagrangian density associated with this field is given by:

LΦ = − 1
8π

(gab∇aΦ∇bΦ∗ +m2ΦΦ∗) (9)

• Extremizing this action with respect to each component of the scalar field, we
get the Klein-Gordon equation

2φA −m2φA = 0 A = 1, 2 (10)
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Matter Model: Scalar Field
• From the point of view of ADM formalism the Hamiltonian formulation of the

dynamics of scalar field is more useful

• The conjugate momentum field is defined as

ΠA ≡
δ(
√
−gLφA

)
δφ̇A

(11)

• In terms of these fields, the dynamical equations are given by

∂tφA =
α2

√
−g

ΠA + βi∂iφA (12)

∂tΠA = ∂i(βiΠA) + ∂i(
√
−gγij∂jφA)−

√
−gm2φA (13)
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Matter Model: Scalar Field
• The stress-energy tensor is given by

Tab = −2
δLΦ

δgab
+ gabLΦ (14)

• We have the following ADM components of the stress tensor

ρ = nµnνTµν =
1
8π

2∑
A=1

( α2

(−g)
Π2

A + γij∂iφA∂jφA +m2φ2
A

)

ji = −nµT i
µ =

1
8π

2∑
A=1

(
− 2

αΠA√
−g

γij∂jφA

)
Sij = Tij

=
1
8π

2∑
A=1

(
2∂iφA∂jφA + γij

[α2Π2
A

(−g)
− γmn∂mφA∂nφA −m2φ2

A

])
(15)
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Conformal Flat Approximation (CFA)

• Motivation

• Facts and assumptions:
• Full 3D Einstein equations are very complex and computationally expensive

to solve
• Heuristic assumption that the dynamical degrees of freedom of the

gravitational fields, i.e. the gravitational radiation, play a small role in at
least some phases of the strong field interaction of a merging binary

• Gravitational radiation is small in most systems studied so far

• An approximation candidate:
• CFA effectively eliminates the two dynamical degrees of freedom, simplifies

the equations and allows a fully constrained evolution
• CFA allows us to investigate the same kind of phenomena observed in the

full relativistic case, such as the description of compact objects and the
dynamics of their interaction; black hole formation; critical phenomena

• CFA has been used in the past with promising results in certain cases
(Wilson-Matthews studies of coalescence of neutron stars; Bruno
Rousseau’s master’s thesis)
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Representative Work

• Wilson, Matthews, Marronetti, Phys. Rev. D 54, 1317 (1996)

• Study of general relativistic hydrodynamics of a coalescing neutron-star
binary system

• They discuss the evidence that, for a realistic neutron-star equation of state,
general relativistic effects may cause the stars to individually collapse into
black holes prior to merging

• Strong fields cause the last stable orbit (ISCO) to occur at a larger
separation distance and lower frequency than previously estimated.

• E. Flanagan, Phys. Rev. Lett. 82, 1354 (1999): inconsistency in the solution of
the shift vector.

• Matthews, Wilson, gr-qc/9911047 (1999): Incorporation of correction:
compression effect still present but smaller for some angular momentum.
Orbital frequency increases towards that expected from Post-Newtonian
solutions.

• Bruno Rousseau’ masters thesis Boson stars studied in axisymmetry under
conformally flat approximation have been shown to behave similarly to the
spherical solutions of the Einstein-Klein-Gordon equations under small
perturbation
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Conformal Flat Approximation (CFA)

• Formalism

• The CFA prescribes a conformally flat spatial metric at all times

• Introduce a flat metric fij as a base / background metric:

γij = ψ4fij (16)

where the conformal factor ψ is a positive scalar function describing the ratio
between the scale of distance in the curved space and flat space(fij ≡ δij in
cartesian coordinates)

• In this approximation all of the geometric variables can be computed from
the constraints as well as from a specific choice of coordinates

• Maximum slicing condition is used to fix the time coordinate

Ki
i = 0

∂tK
i
i = 0 (17)
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Conformal Flat Approximation (CFA)

• Slicing Condition

• Gives an elliptic equation for the lapse function α

∇2α = − 2
ψ
~∇ψ · ~∇α+ αψ4

(
KijK

ij + 4π (ρ+ S)
)

(18)

• Hamiltonian Constraint

• Gives an elliptic equation for the conformal factor ψ

∇2ψ = −ψ
5

8
(
KijK

ij + 16πρ
)

(19)

• Momentum Constraints

• Given elliptic equations for the shift vector components βi

∇2βj = −1
3
γ̂ij∂i

(
~∇ · ~β

)
+ αψ416πJj − ∂i

[
ln

(
ψ6

α

)] [
γ̂ik∂kβ

j

+γ̂jk∂kβ
i − 2

3
γ̂ij

(
~∇ · ~β

) ]
(20)

13



Conformal Flat Approximation (CFA)

• Note that KijK
ij can also be expressed in terms of the flat operators. It ends

up being expressed as flat derivatives of the shift vector:

KijK
ij =

1
2α2

(
γ̂knγ̂

mlD̂mβ
kD̂lβ

n + D̂mβ
lD̂lβ

m − 2
3
D̂lβ

lD̂kβ
k

)
(21)
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Conformal Flat Approximation (CFA)

• 3d Cartesian Coordinates

∂tφA =
α

ψ6
ΠA + βi∂iφA (22)

∂tΠA = ∂x

(
βxΠA + αψ2∂xφA

)
+ ∂y

(
βyΠA + αψ2∂yφA

)
(23)

+ ∂z

(
βzΠA + αψ2∂zφA

)
− αψ6dU(φ2

0)
dφ2

0

φA

∂2α

∂x2
+
∂2α

∂y2
+
∂2α

∂z2
= − 2

ψ

[
∂ψ

∂x

∂α

∂x
+
∂ψ

∂y

∂α

∂y
+
∂ψ

∂z

∂α

∂z

]
+αψ4

(
KijK

ij + 4π (ρ+ S)
)

(24)

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= −ψ

5

8
(
KijK

ij + 16πρ
)

(25)
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Conformal Flat Approximation (CFA)

• x component of the shift vector in cartesian coordinates

∂2βx

∂x2
+
∂2βx

∂y2
+
∂2βx

∂z2
= −1

3
∂

∂x

(
∂βx

∂x
+
∂βy

∂y
+
∂βz

∂z

)
+ αψ4 16πJx

− ∂

∂x

[
ln

(
ψ6

α

)] [
4
3
∂βx

∂x
− 2

3

(
∂βy

∂y
+
∂βz

∂z

)]
− ∂

∂y

[
ln

(
ψ6

α

)] [
∂βx

∂y
+
∂βy

∂x

]
− ∂

∂z

[
ln

(
ψ6

α

)] [
∂βx

∂z
+
∂βz

∂x

]
(26)

• KijK
ij in 3d cartesian coordinates

KijK
ij = 1

2α2

[(
∂βx

∂x

)2

+
(

∂βx

∂y

)2

+
(

∂βx

∂z

)2

+
(

∂βy

∂x

)2

+
(

∂βy

∂y

)2

+
(

∂βy

∂z

)2

+
(

∂βz

∂x

)2

+
(

∂βz

∂y

)2

+
(

∂βz

∂z

)2

+ ∂
∂x

(
βx ∂

∂x + βy ∂
∂y + βz ∂

∂z

)
βx

+ ∂
∂y

(
βx ∂

∂x + βy ∂
∂y + βz ∂

∂z

)
βy + ∂

∂z

(
βx ∂

∂x + βy ∂
∂y + βz ∂

∂z

)
βz

−2
3

(
∂βx

∂x + ∂βx

∂x + ∂βx

∂x

)2
]

(27)
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Conformal Flat Approximation (CFA)

• Then the following set of functions completely characterize the geometry at
each time slice

α = α(t, ~r), ψ = ψ(t, ~r), βi = βi(t, ~r) (28)

where ~r depends on the coordinate choice for the spatial hypersurface

• The solution of the gravitational system under CFA and maximal slicing
condition can be summarized as:

• Specify initial conditions for the complex scalar field

• Solve the elliptic equations for the geometric quantities on the initial slice

• Update the matter field values to the next slice using their equation of
motion

• For the new configuration of matter fields, re-solve the elliptic equations for
the geometric variables and again allow the matter fields to react and evolve
to the next slice and so on
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Conformal Flat Approximation (CFA)

• Discretization Scheme:

Lu− f = 0 ⇒ Lhuh − fh = 0 (29)

• For hyperbolic operators L: second order accurate Crank-Nicholson scheme.

• For elliptic operators L: second order accurate centred finite difference
operators.

• Dirichlet Boundary conditions applied.

• Numerical Techniques:

• pointwise Newton-Gauss-Seidel (NGS) iterative technique was used to solve
the finite difference equations originated from the hyperbolic set of equations.

• Multigrid Full Approximation Storage Algorithm (FAS) was applied on the
discrete version of the elliptic set of equations. NGS is used in this context
as a smoother of the solution error.
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Compactification of the spatial domain: challenges

• Definition: Compactification of the spatial domain means to map R into a
finite subinterval M ∈ R:

ξ : R −→ [−1, 1] (30)

• As this subinterval can be remapped in any other finite one, there is no loss of
generality if [−1, 1] interval is chosen.

• Then all that is left is to find a particular function ξ = ξ(x) ∈ C2 to do this
map. In our case we chose hyperbolic tangent as the compactification function
for each spatial dimension:

χ = tanh(x) (31)

η = tanh(y) (32)

ζ = tanh(z) (33)

• Main advantage: The boundary conditions corresponding to asymptotically flat
spacetime (AFS) can be set exactly, ie they are Dirichlet boundary conditions.
For non-compact domain, the boundary conditions for AFS are set
approximately as Robin boundary conditions.
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Compactification of the spatial domain: challenges

• Main Disadvantage: The elliptical equations for the geometric quantities
become anisotropic. For example, the hamiltonian constraint after
compactification can be written as:

(1− χ2)2ψ,χχ − 2χ(1− χ2)ψ,χ + (1− η2)2ψ,ηη − 2η(1− η2)ψ,η

+(1− ζ2)2ψ,ζζ − 2ζ(1− ζ2)ψ,ζ = −ψ
5

8
(
KijK

ij + 16πρ
)

(34)

• The functions in front of the second order derivative terms may differ
drastically from one region to the other in the compact space. This difference
becomes bigger as we increase the resolution of the numerical solution.

• Multigrid solver: It is the most efficient method to solve numerically elliptical
equations (O(N) where N is the number of unknowns). The heart of a good
Multigrid solver is the relaxation method whose main function is to smooth the
solution found on the finer grid.

• Anisotropic elliptic equations require more sophisticated smoothers. So far
there is no parallel and AMR computation infrastructure capable of handling
anisotropic elliptic equations. We had to postpone the solution of this problem
for the moment and we will focus on the non-compact coordinates equations.
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Current Project - Coalescence of Boson Stars
• Motivation

• Controversy:
• Wilson-Mathews compression effect results raised a controversy about the

validity of the conformal flat approximation
• In order to decide if CFA is a good approximation to model compact

binaries it would be interesting to simulate it using a simpler model

• Matter similarities:
• Fluid stars and Boson stars have some similarity concerning the way they

are modelled, e.g. both can be parametrized by their central density ρ0

and have qualitatively similar plots of total mass vs ρ0

• Then in the strong field regime for the compact binary system the
dynamics may not depend sensitively on the details of the model

• Advantage of using scalar fields: no problems with shocks, evolution done
by Klein-Gordon eqn, should not present any stability problem.
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Current Project - Coalescence of Boson Stars
• Questions to be addressed

• Would the individual collapse occur before merging for boson stars as well or
it is model dependent?

• How good is the approximation? How do we test if the results are close to
solutions of Einstein equations?

• Is the individual collapse a spurious result coming from CFA?

• What is the final result of the merging? Can we compare to results from
other techniques?

• Where is the ISCO? Does this result match to the fluid star ones? Can be at
least qualitatively compared?

• How can we extract the gravitational waveforms from this system?
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Results:
• Orbital Dynamics: 2 boson stars - vx = 0.09

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: 120 per edge. Physical time: t = 4500.
Simulation parameters: Courant factor λ = 0.4; Grid size: 1133; 2.4GHz
Dual-Core AMD Opteron CPU time: 285 hours (12 days).
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Results:
• Orbital Dynamics: 2 boson stars - vx = 0.07

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: 120 per edge. Physical time: t = 2250.
Simulation parameters: Courant factor λ = 0.4; Grid size: 1133; 2.4GHz
Dual-Core AMD Opteron CPU time: 158 hours (6.5 days).
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Results:
• Orbital Dynamics: 2 boson stars - vx = 0.05

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: 120 per edge. Physical time: t = 1500.
Simulation parameters: Courant factor λ = 0.4; Grid size: 1133; 2.4GHz
Dual-Core AMD Opteron CPU time: 115 hours (4.5 days).
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Results:
• Head-on collision: 2 boson stars - vx = 0.4

Z = 0 slice for |φ| Z = 0 slice for α

• φ0 : 0.02. Physical coordinate domain: [−50, 50,−25, 25,−25, 25]. Total
physical time: t = 140. Simulation parameters: λ = 0.4; Grid size:
[Nx, Ny, Nz] = [129, 65, 65];
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Future Directions:
• Code Improvements:

• Add some features to the 3D code/equations such as:
• An increase in resolution by implementing code parallelization and applying

adaptive mesh refinement techniques (use of PAMR infrastructure)
• The improvement of the boundary conditions in order to better capture

the physical boundary conditions: asymptotically flat spacetime.
• A radiation back reaction term to the Klein-Gordon equation in order to

allow the effects of the radiation into the dynamics of the system.

27



Appendix: Boson Stars in Spherical Symmetry
• Spherically Symmetric Spacetime (SS):

ds2 =
(
−α2 + a2β2

)
dt2 + 2a2β dtdr + a2dr2 + r2b2dΩ2 , (35)

• Hamiltonian constraint:

− 2
arb

{[
(rb)′

a

]′
+

1
rb

[(
rb

a
(rb)′

)′

− a

]}
+ 4Kr

rK
θ
θ + 2Kθ

θ
2

=

8π
[
|Φ|2 + |Π|2

a2
+m2|φ|2

]
(36)

• Momentum constraint:

Kθ
θ
′ +

(rb)′

rb

(
Kθ

θ −Kr
r

)
=

2π
a

(Π∗Φ + ΠΦ∗) . (37)

where the auxiliary field variables were defined as:

Φ ≡ φ′ , (38)

Π ≡ a

α

(
φ̇− βφ′

)
, (39)
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Boson Stars in Spherical Symmetry
• Evolution equations

ȧ = −αaKr
r + (aβ)′ (40)

ḃ = −αbKθ
θ +

β

r
(rb)′ . (41)

˙Kr
r = βKr′

r −
1
a

(
α′

a

)′

+ α

{
− 2
arb

[
(rb)′

a

]′
+KKr

r − 4π
[
2|Φ|2

a2
+m2|φ|2

]}
(42)

˙Kθ
θ = βKθ′

θ +
α

(rb)2
− 1
a(rb)2

[
αrb

a
(rb)′

]′
+ α

(
KKθ

θ − 4πm2|φ|2
)

(43)

• Field evolution equations

φ̇ =
α

a
Π + βΦ (44)

Φ̇ =
(
βΦ +

α

a
Π

)′
(45)

Π̇ =
1

(rb)2
[
(rb)2

(
βΠ +

α

a
Φ

)]′
− αam2φ+ 2

[
αKθ

θ − β
(rb)′

rb

]
Π (46)
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Appendix: Boson Stars in Spherical Symmetry
• Maximal-isotropic coordinates

• Maximal slicing condition

K ≡ Ki
i = 0 K̇(t, r) = 0 (47)

• Isotropic condition
a = b ≡ ψ(t, r)2 (48)

• They fix the lapse and shift (equivalent of fixing the coordinate system)

α′′+
2
rψ2

d

dr2
(
r2ψ2

)
α′+

[
4πψ4m2|φ|2 − 8π|Π|2 − 3

2
(
ψ2Kr

r

)2
]
α = 0 (49)

r

(
β

r

)′

=
3
2
αKr

r (50)

• Constraint equations

3
ψ5

d

dr3

(
r2
dψ

dr

)
+

3
16
Kr

r
2 = −π

(
|Φ|2 + |Π|2

ψ4
+m2|φ|2

)
(51)

Kr
r
′ + 3

(rψ2)′

rψ2
Kr

r = −4π
ψ2

(Π∗Φ + ΠΦ∗) (52)
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Appendix: Boson Stars in Spherical Symmetry
• Complex-scalar field evolution equations

φ̇ =
α

ψ2
Π + βΦ (53)

Φ̇ =
(
βΦ +

α

ψ2
Π

)′

(54)

Π̇ =
3
ψ4

d

dr3

[
r2ψ4

(
βΠ +

α

ψ2
Φ

)]
− αψ2m2φ

−
[
αKr

r + 2β
(rψ2)′

rψ2

]
Π (55)
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Appendix: Boson Stars in Spherical Symmetry
• These equations were coded using RNPL and tested for a gaussian pulse as

initial data.
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Appendix: Boson Stars in Spherical Symmetry
• Initial Value Problem

• We are interested in generating static solutions of the Einstein- Klein-Gordon
system

• There is no regular, time-independent configuration for complex scalar fields
but one can construct harmonic time-dependence that produce time-independ
ent metric

• We adopt the following ansatz for boson stars in spherical symmetry in order to
produce a static spacetime:

φ(t, r) = φ0(r) e−iωt , β = 0 (56)

where the last condition comes from the demand of a static timelike Killing
vector field.

• Polar-Areal coordinates

K = Kr
r b = 1 (57)

• Generalization of the usual Schwarzschild coordinates to time-dependent,
spherically symmetric spacetimes. Easier to generate the initial data solution
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Appendix: Boson Stars in Spherical Symmetry
• The line element

ds2 = −α2dt2 + a2dr2 + r2dΩ2 . (58)

• The equations of motions are cast in a system of ODEs. It becomes an
eigenvalue problem with eigenvalue ω = ω(φ0(0))

a′ =
1
2

{
a

r

(
1− a2

)
+ 4πra

[
φ2a2

(
m2 +

ω2

α2

)
+ Φ2

]}
(59)

α′ =
α

2

{
a2 − 1
r

+ 4πr
[
a2φ2

(
ω2

α2
−m2

)
+ Φ2

]}
(60)

φ′ = Φ (61)

Φ′ = −
(
1 + a2 − 4πr2a2m2φ2

) Φ
r
−

(
ω2

α2
−m2

)
φa2 (62)

34



Appendix: Boson Stars in Spherical Symmetry
• Field configuration and its aspect mass function for φ0(0) = 0.05. Its

eigenvalue was ”shooted” to be ω = 1.1412862322

• Note its exponentially decaying tail as opposed to the sharp edge ones for its
fluids counterparts
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Appendix: Boson Stars in Spherical Symmetry
• The ADM mass as a function of the central density and the radius of the star

as a function of ADM mass. Note their similarity to the fluid stars
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