The RNPL Reference Manual

Robert Marsa
Matthew Choptuik
Center for Relativity

The University of Texas at Austin
Austin, TX, 78712-1081

marsa@hoffmann.ph.utexas.edu
matt@infeld.ph.utexas.edu

March 1995

Introduction

The acronym RNPL stands for Rapid Numerical Prototyping Language. It is a language for ex-
pressing time-dependent systems of partial differential equations and the information necessary for
solving them using finite-difference techniques. It has advantages over traditional programming lan-
guages such as C and FORTRAN because it only requires the user to enter the essential structure
of the program while it fills in the details.

RNPL can produce complete working programs, or a “skeleton” that the user can complete. The
programs include facilities for reading parameters from a file, interactive control over output times
and functions, memory management, and state dumping for calculation interruption and restart.
Throughout this manual, program examples will be given in Courier , while the rest of the text will
be in Times.

Chapter 1

Program Structure

An RNPL program is completely declarative. There are no loop constructs, branch instructions,
or sub-functions—just a series of declarations. These declarations can occur in any order.

The input stream is (as usual) broken up into tokens. Tokens are collections of non-white-space
characters and are separated by white-space. A white-space character is a space, tab, or new-line.
White-space is ignored except as a token separator, so programs are free-form in the sense of C.

1.1 Comments

There are two kinds of comments in RNPL programs. The first kind must start with a # at the
beginning of a line. It continues till the end of the line. The second kind starts with // and ends
at the end of the line (just like a C++4 comment). The following example illustrates both kinds of
comments.

This is the first kind of comment
float A on gridl // This is the second kind of comment
// So is this

1.2 Parameters

A parameter can be declared in several ways depending on whether it is a scalar or a vector, whether
or not it has a default value, and whether or not it is a “constant.” Some example declarations are:

parameter int fred

constant parameter float jim := 5

parameter float george[10]

parameter float ted[3] = [2.0 1.7 11]

parameter string name := '"file_name"

constant parameter string comments[2] := ["comment 1" "comment 2"]

As the examples show, the parameter declaration begins with the reserved word parameter
(optionally preceded by the reserved word constant). This is followed by a type which can be int ,
float , or string. Next comes a name with a size specification if the parameter is a vector. Finally,
there is an optional assignment statement consisting of either = or := and a value.

Parameters provide a means of getting information to the program at run time. The use of
parameters is discussed in section 4.1.

1.2.1 System Parameters

Along with the parameters discussed above, is a special type of parameter known as the system
parameter. These parameters are program dependent, but must be known at compile time. There-
fore, system parameters must have default values and are not read from parameter files. Currently
system parameters must be scalars. There is one predefined system parameter which specifies
the memory size for FORTRAN programs in doubles. Its default value is 2000000. An example
statement follows:

system parameter int memsiz := 100000

System parameters are placed in a file called sys_param.inc.

1.3 Coordinate Systems

The RNPL compiler must know which names are coordinates. It further groups these names into
systems. Some example coordinate declarations are:

rect coordinates t,x,y,z
sph coordinates t,r,theta,phi

First comes a coordinate system name, then the reserved word coordinates, and then a comma-
separated list of names. Order is important, with the first coordinate in the list taken to be time.
Any time coordinate can be repeated in other coordinate systems, but each spatial coordinate can
be used only once.

1.4 Grids

Grids define the spatial regions over which the grid functions will be defined as well as their storage.
A grid declaration can take one of several forms, the longest of which would be something like:

uniform rect[x,z] grid gi [1:Nx][1:Nz] {xmin:xmax}{zmin:zmax}

The first word can be uniform or nonuniform, though only the former is currently defined.
Next comes the name of the coordinate system followed by a list of coordinates on which the grid is
defined. The above grid is two dimensional with coordinates # and z. After the coordinate system
comes the reserved word grid followed by the grid name. Next comes the index region. In this
example, the first index starts at 1 and goes to Nx, while the second starts at 1 and goes to Nz.
Nx and Nz must be defined elsewhere. The index regions can contain arbitrary expressions such as
[A*B+C-2:4%Nx-5/a], however, as discussed in section 2.2, it is best to keep to forms like [1:Nx]
and [0:Nx-1], where Nx has been declared as a parameter. Finally, comes the coordinate region
which gives the actual spatial ranges of the coordinates. In the example, we have zmin < 2 < zmax
and zmin < z < zmaz . Coordinate regions must be of the form {namel:name2}, where name1
and name2 have been declared as parameters.

Other forms of the grid declaration leave out one or more of the above parts. The minimum
allowable declaration is:

uniform rect grid g2

This declaration (along with the example coordinate declaration in section 1.3) declares g2 to be
a three dimensional grid with coordinates x,y and z. The index region will be [0:Nx-1] [0:Ny-1] [0:Nz-1]
for C output and [1:Nx][1:Ny][1:Nz] for FORTRAN output. The coordinate region will be
{xmin:xmax}{ymin:ymax}{zmin:zmax}

1.5 Grid Functions

A grid function is a function defined on a grid at one or more times. Some examples of grid function
declarations are:

float A on gl at -1,0,1

int B on g2 at 0,1

float C on gl

float D on g2 at -1,0,1 alias

float E on g3 at 0,1 "Electric Field"

First comes the grid function type, either float or int. Next comes the name followed by the
reserved word on and the grid name on which the function is defined. If the declaration stopped
here (such as that for C above), we get a single time level. Adding the reserved word at followed
by a list of offsets (positive or negative integers) gives a function defined on one time level for each
offset. For instance the definition for A would give a three time level function defined at times
n — 1,n, and n + 1. Next comes the optional reserved word alias which declares common storage
for the first and last time levels. Following any of these declarations can be a string which is used
as a “print name” for the grid function. Uses for the print name will be explained in chapter 2.

1.6 Attributes

An attribute is a flag array associated with the grid functions. For instance, an attribute may tell
which grid functions are to be output and which are not. Attributes are defined in a similar manner
to vector parameters, except the size is replaced by an encoding. The encoding is either encodeone
or encodeall, with encodeone giving one value per grid function and encodeall giving one value
per time level per grid function. For instance, if five grid functions are defined, three of which
have three time levels each while the remaining two have two levels each, then an attribute marked
as encodeone would have a length of five, while an attribute marked as encodeall would have a
length of thirteen. In this case an output flag array could be defined as either

attribute int out_gf encodeone
or

attribute int out_gf encodeone := [0 0 1 1 O]

1.7 Derivative Operators

Derivative operators are operators which act on grid functions. They are used for turning differential
equations into finite difference equations. Here is a declaration for a forward difference operator:

operator D_FW(f,r) := (<O>f[1] - <0>f[0])/dr

Whenever an operator is used in an expression (see section 1.12), the operator is replaced by
its definition. The name f is arbitrary. It simply shows where the expression goes in the definition.
For instance, if D_FW(3*A+B,r) appeared in an expression, the £’s in the right hand side would be
replaced by 3*A+B. The notation <0>f[1] is interpreted as f7 |, that is, f at the nth time level and
i+1st grid position. The <>[] is really an operator which acts on expressions as follows:

<a>f[b] — fif fis a number or parameter or time coordinate
<a>f[b] — f;1p if fis a spatial coordinate
<a>f[b] — f”"’“ if fis a grid function

Three dimensional forward difference operators would look like this:

(<0>f[1][0]1[0] - <0>f[0]1[0]1[0])/dx
(<0>f[0][11[0] - <0>f[0][0][0])/dy
(<0>f[0][0][1] - <0>f[0][0][0])/d=z

operator D_FW(f,x)
operator D_FW(f,y)
operator D_FW(f,z)

Operator definitions can be nested as in:

operator D_FW({f,r) (<0>f[1] - <0>f[0])/dr
operator D_BW(f,r) := (<O>f[0] - <0>f[-1]1)/dr
operator D_CN1(f,r,r) D_BW(D_FW(<0>f[0],r),r)
operator D_CN2(f,r,r) D_BW(D_FW(<1>f[0],r),r)

As you can predict, the definition of D_CN1 will result in the usual centered second derivative,
namely (ff, —2fF + fl© 1)/dr?, while the definition of D_CN2 will result in the same thing applied
at the advanced time level, that is (f”"'1 2fE 4 frtYy /dr?. The list of coordinate names after
the £ signifies with respect to which coordinate(s) the derivative is taken.

Although operators are defined like derivatives and act as derivatives under certain circum-
stances (see section 1.12), they can be defined to perform other functions, such as the following
definition which performs spatial averaging.

operator AVG(f,r) := (KO0>f[1] + <0>f[0])/2

Because operators are internally treated as derivatives, even definitions such as this need the
coordinate list.

1.8 Residuals

Residuals define the system of equations, typically by using derivative operators. Consider the
following residual definition:

residual phi { [0:0] := D_LF(phi,t) ;
[1:Nx-2] := D_LF(phi,t,t) - D_LF(phi,x,x) ;
[Nx-1:Nx-1] := D_LF(phi,t) }

Assuming the proper definitions of the derivative operators, this residual will encodes the linear
wave equation on a string with the end points fixed. An equivalent declaration would be:

residual phi { [0:0] := D_LF(phi,t) = 0 ;
[1:Nx-2] := D_LF(phi,t,t) D_LF(phi,x,x) ;
[Nx-1:Nx-1] := D_LF(phi,t) = 0 }

(@]

First comes the reserved word residual followed by the name of the grid function whose residual
is being defined. Next comes a bracket-enclosed set of index regions and expressions. The index
region shows over what range the expression is a valid description of the behavior of the system.

The union of the index regions should equal the index region of the grid on which the function is
defined, but this is not required. Note that each region-expression pair is separated by a semi-colon.
The residual tells how to determine the advanced value of a grid function. Thus, the residual
must contain <a>f... where a is the offset to the most advanced time level defined for grid function
f.
Part of a residual for a three dimensional grid function would look like:

residual A { [1:NxJ[1:1][1:1]
[(Nx:Nx] [1:Ny][1:Nz]

D_LF(A,x) + D_FW(B,y) ;
<1>A[0][0][0] = 5.0%C }

The reserved word residual can be preceded by the reserved word evaluate which tells the
compiler to produce code which will evaluate the residual.
In addition, the word residual can be followed by a global offset for example:

residual <1>[0] A { [1:Nx] := ... }
This offset is applied globally to each expression appearing in the residual.
See section 1.12 for more information on expressions.

1.9 Initializations

An initialization defines the initial data for a grid function. Its form is identical to the residual dec-
laration with residual replaced by initialize. However the expression is interpreted differently.
Consider the following initialization declaration:

initialize phi { [1:Nr] := amp*exp(-((r-c)/delta)"~2) }

Unlike the residual declaration, the expression in the initialization must not contain its grid
function. The retarded time level of the grid function is set to the expression. In the case above,
phi will be set to a Gaussian.

1.10 Loop Driver

The loop driver declaration has the form looper name, where name is any identifier. When the com-
piler processes the driver statement, it looks in its library directory for a file called name.drv_lang,
where lang is ¢, f77, or £90. It then simply includes this file into the generated source.

There are currently two predefined loopers: iterative and standard. The iterative looper makes
an initial guess at the advanced grid function values, then calls the update routines and iterates
until the norm of the residual is below a threshold. The standard driver just calls the update
routines.

1.11 Updates
Update declarations can take many forms. Here are some examples:

auto update phi,pi,beta

stub evolver updates A,B,C

header A, B[Bnpl,Bn,Bnml], C[C], x,y,z,dt,auto work#0(5xNx*xNy*Nz),
static work#1(3*Nx*Ny-.5%Nz)

myroutine.inc myupdate update A,B header A,B,dt

The first form defines an automatic update. The declaration above would cause the compiler
to produce a routine to update the grid functions phi, pi, and beta if residuals have been declared
for them. Otherwise, the compiler has no idea how to update the grid functions and will produce
an error message.

The second declaration will cause the compiler to produce the header for a routine called evolver
which is expected to update grid functions A, B, and C. The body of the routine is left blank, to
be filled in by the user. Following the reserved word header, comes a list of things to appear in
the calling sequence for the function. A grid function name such as A above will cause all the time
levels of A to be passed to the function. If A has three time levels (1,0,-1), then they will be named
Anpl, An, and A.nml by default. The user can provide his own names to override the defaults
as in the case of B. If only one name is provided (as for C), the time levels will be passed in as the
elements of a single vector, the first component of which will be the advanced time level.

Other things that can appear in the header list are coordinates (such as x,y,z above) and
coordinate differentials (such as dt). Parameters can also be included in the list. Work arrays are
declared like the final two parameters. First comes auto or static. Static work arrays are declared
at the start of the program and persist throughout. Auto work arrays are allocated before the call
to the update routine and are destroyed afterwards. Next comes the word work followed by the #
symbol and an integer. This integer is tacked onto the end of the word work to form the name of
the array. Finally comes an expression for the size of the work array enclosed in parentheses.

1.12 Expressions

Expressions are made up mainly of identifiers separated by operators. RNPL defines the usual set of
arithmetic operators (+,-,%,/) along with exponentiation (~ or **). The operators obey the usual
precedence rules.

Identifiers may be names of grid functions, coordinates, or parameters. In addition, grid func-
tions may be supplied with temporal and spatial offsets (see section 1.7), and coordinates may be
supplied with a spatial offset.

Expressions can also contain the well-known functions exp, log, tan, sin, cos, sinh, cosh, tanh,
and sqrt as well as derivative operators.

Here is an example of a complicated RNPL expression:

a*b+(c*2.67/<0>phi[1] + d°2)/tan(theta) - r[-1]#D_(phi*3/a,r) +
cos(3*eta)*D_(eta+D_(phi,r),r) + expand D_(axb + c,r)

You’ll notice the word expand before the last derivative operator. This tells RNPL to symbolically
expand the derivative before making the operator substitution. Thus, the final term is equivalent
to:

D_(a,r)*b + axD_(b,r) + D_(c,r)

Chapter 2

Implementation

2.1 Case Sensitivity

Identifiers in RNPL are case sensitive if the target language is C and are case insensitive if the target
language is FORTRAN. Regardless of the target language, reserved words may be given in all lower
case or all upper case. Case combinations will produce syntax errors.

2.2 Coordinate Differentials

Coordinate differentials are assumed to be anything that is a coordinate name with a d in front
of it, such as dt or dx if t and x are coordinates. A coordinate differential is defined by the index
region and coordinate region of the first grid which uses its coordinate. For instance, if the following
coordinate system and grids are defined:

rect coordinates t,x,y

uniform rect grid gi [1:Nx][1:Ny] {xmin:xmax} {ymin:ymax}
uniform rect[x] grid g2 [1:N] {min:max}

then dx will be defined from gl by dz = (#maz — amin)/(Nz — 1) even though g2 may have a
different coordinate spacing.

2.3 Special Parameters and Attributes

There are several “special” parameters defined by RNPLThese are declared by the program (if not
by the user) and given default values. They will be read from the parameter file if it contains them.
These parameters are shown in the following list along with their definitions and default values.

constant parameter float start_t := 0 // start time

constant parameter int iter := 100 // number of iterations

constant parameter float epsiter := le-5 // iteration threshold

constant parameter int fout := 0 // file output (0 no, 1 yes)

constant parameter int ser := 0 // fs output (0 no, 1 yes) if appropriate
constant parameter float lambda := .5 // dt/dr, dr=sqrt((dx"2+dy~2+dz"2)/3)
constant parameter int rmod := 1 // output every rmodth time step

constant parameter string in_file // name of file from which initial data
// will be read

constant parameter string out_file // name of file to which data will
// be written

constant parameter int level := 0 // refinement level

constant parameter int s_step := 0 // starting iteration number

constant parameter string tag := "" // prepend symbol for grid function names
constant parameter int N<c>0 := 2 // base number of grid points for the

// coordinate ¢ (there is one for each spatial
// coordinate)

The names N<c>, where <c> is a coordinate, are declared internally to RNPL. They are NOT
parameters, nor should they be declared by the user. N<c> is defined at run time by N<c> =
N<c>0 2!°v*l 1. Thus, if a grid is defined with an index region of length N<c>, it will be automatically
scaled simply by changing the value of level in the parameter file. Grids defined in this way will
always have an odd number of points in each dimension.

There is one pre-defined attribute: out_gf. This is an integer array with one element for each
grid function, that is:

attribute int out_gf encodeone

Each element is assigned the default value of 0. This element tells whether output is enabled for
that grid function or not. The values of this attribute can be changed during program execution.

Chapter 3

Compiler Usage

3.1 Code Generation

The RNPL compiler is called from the command line with the following command:
rnpl -lang [program_file]

The switch -lang tells RNPL what the target output language is, ¢, 77, or 90.

The compiler generates code for two programs, the solver and the initial data generator. If
program file is specified, rnpl will output the solver code to a file. The extensions .rnpl or _rnpl will
be removed from the end of program file if they exist. The appropriate extension for the output
language is then appended (.c or .f). The initial data generator is written to program file_init plus
the appropriate extension (.c or .f) If no program file is specified, rnpl reads from stdin and writes
to stdout. In this case, the initial data generator goes to r_out.nit (.c or .f). Errors are directed
to stderr.

RNPL sends the code for the update routines to a file named updates(.h or .f). Also, a default
attribute file is produced, named .rnpl.attributes.

In the case of FORTRAN output, two include files named globals.inc and other_glbs.inc are also
produced.

The compiler needs certain support files which it looks for in the current directory or in the
directory defined by the environment variable RNPL_PATH.

3.2 Target Language Compilation

Once the RNPL compiler has been executed, the C or FORTRAN sources must be built. In the
case of C output, simply compile the two .c files since updates.h is automatically included. For
FORTRAN code, compile the solver and updates.f and link them together.

10

Chapter 4

Generated Programs

4.1 Parameter Files

A parameter file is an ASCII file containing arbitrary text along with lines of the form name :=
value, where name is the name of a parameter, and value is its new value. At run time, RNPL
generated programs will read this file and use any values found to initialize parameters.

Here is an example parameter file:

This is a parameter file

tag := "a_"

level := 1

NxO := 100

xmin := -10

in_file := "init_data.hdf"
out_file := "dump.hdf"
4.2 Solver

If RNPL is run on wave.rnpl and the resulting source files are then compiled into executables named
wave and wave_init, then the solver (wave) can be executed by typing “wave param file” or “wave”
on the command line. Param file is an ASCII file of parameter values as discussed above. If no
parameter file is given on the command line, the program will prompt for one. If there is no initial
data file (in_file), wave will execute wave_init to generate one. If wave_init doesn’t exist, wave will
print a warning and continue without reading the initial data. If there is an initial data file, wave
will read it and continue. Every rmod time steps (rmod is a parameter), wave will generate output
as specified by out_gf, ser, and fout. It will print the current step and value of time to stdout.
During execution, the user can type C or 7 to stop wave. A menu will then be presented which
allows the user to change the output frequency (rmod) and which grid functions will be output
(out_gf). The user can also choose to quit. Upon termination (either forced or after “iter” time
steps), wave will dump state to out_file. Execution can later be resumed by copying out_file to
in_file and rerunning wave.

11

4.3 Initial Data Generator

The initial data generator can be run from the command line as well as being called by the solver.
It reads the same parameter file as the solver and writes the initial data to in_file.

4.4 Output

One of the design goals of RNPL is to provide uniform and automatic access to 1/O facilities to aid
the user in examining the results of computations. As discussed in section 2.3, there is currently
one pre-defined attribute: out_gf. If the special parameter fout is set, then every rmod time steps,
output is generated for every grid function for which output has been enabled via out_gf. Output is
to .hdf files: one file for each selected grid function is created, and each file consists of a sequence of
dumps labelled with the actual output time. These files can then be post-processed with a variety
of software, including the Explorer™ module, ReadHDF_GFTO available via anonymous ftp from
helmholtz.ph.utexas.eduin /pub/explorer/modules.

The interface to the lower level .hdf routines is also directly accessible from C or Fortran codes
which have not been generated using RNPL and is described in The RNPL User’s Guide.

Chapter 5

RNPL Grammar in BNR Format

dec_list —
| dec_list declaration

declaration — param_dec
| coord_dec

| grid_dec

| gfunc_dec

| attrib_dec

| d_operator

| residual

| initialization
| looper

| update

param_dec — param p_type name
| param p_type name assignop scalar
| param p_type name v_size
| param p_type name v_size assignop vector
| const param p_type name
| const param p_type name assignop scalar
| const param p_type name v_size
| const param p_type name v_size assignop vector

coord_dec — name coordinates coord_list

grid_dec — g_type name grid name i_region c_region
| g_type name grid name
| g_type name obrack coord list cbrack grid name i_region
c_region
| g_type name obrack coord list cbrack grid name

gfunc_dec — type name on name
type name on name str
| type name on name at o_list

13

| type name on name at o_ist alias
| type name on name at o_list str
| type name on name at o_list alias str

attrib_dec

— attrib p_type name encoding
| attrib p_type name encoding assignop vector
d_operator — operator d_op assignop expr
residual — resid name obrace res_list cbhrace
| resid time index name obrace res_list cbrace
| evaluate resid name obrace reslist cbrace
| evaluate resid time index name obrace res_list cbrace
initialization — initialize name obrace res_list cbhrace
looper — looper name
update — name name update coord_list header ref_list
| stub name update coord_list header ref_list
| auto update coord_list
p_type — int
| float
| string
name — iden
scalar — inum
| minus inum
| num
| minus num
| str
v _size — obrack inum cbrack
vector — obrack scalar_list cbrack
coord _list — name
| coord_list comma name
g _type — uniform
| nonuniform
i_region — obrack expr colon expr cbrack

| obrack expr colon expr cbrack i_region

c_region — obrace name colon name cbrace

type

o list

encoding

d_op

expr

res_list

time

index

ref_ list

scalar_list

|

T

o

- —

— -

0

|

obrace name colon name cbrace c_region

int
float

Inum

minus Inum

o list comma inum

o list comma minus inum

encodeone
encodeall

name oparen expr comma coord list cparen
expand name oparen expr comma coord_list cparen

expr plus expr
expr minus expr
expr equals expr
expr times expr
expr divide expr
expr caret expr
plus expr

minus expr
oparen expr cparen
d_op

func

gfunc

coord

name

num

inum

i_region assignop expr
res_list scolon i_region assignop expr

oabr inum cabr
oabr minus inum cabr

obrack inum chbhrack

obrack minus inum cbrack
obrack inum cbhrack index
obrack minus inum cbrack index

reference
ref list comma reference

scalar

func
gfunc
coord

reference

Terminals

param
assignop
coordinates
grid
obrack
cbrack

on

at

attrib
operator
resid
obrace
cbrace
evaluate
initialize
looper
update

int

float
string

iden

Inum
minus
num

str

comma
uniform
nonuniform
colon
encodeone
encodeall

scalar_list scalar

— name oparen expr cparen

— time name index

— name obrack inum cbrack
name

name obrack coord_list cbrack
auto work pound inum oparen expr cparen
static work pound inum oparen expr cparen

0

parameter or PARAMETER

= or =

coordinates or COORDINATES
grid or GRID

[

]
on or ON

at or AT

attribute or ATTRIBUTE
operator or OPERATOR
residual or RESIDUAL

{

}
evaluate or EVALUATE

initialize or INITIALIZE

looper or LOOPER

update or updates or UPDATE or UPDATES
int or INT

float or FLOAT

string or STRING

see below

positive integer

positive real number

“any characters”

uniform or UNIFORM
nonuniform or NONUNIFORM

encodeone or ENCODEONE
encodeall or ENCODEALL

oparen (

cparen)

expand expand or EXPAND
plus +

times *

divide /

caret ~ or **

scolon ;

oabr <

cabr >

An iden is string which starts with a letter or _ and contains letters, digits, and _. It can also be
two or more iden’s separated by . or ->. For example, the following are valid iden’s:

frank

AlBerT0

_georgel23fred ___

brad.charles

employer->name.first

Chapter 6

Acknowledgements

This work was supported by NSF PHY-9310083 to R.A. Matzner, and ASC9318152 (ARPA sup-
plemented) to the Binary Black Holes Grand Challenge Alliance

18

Bibliography

19

