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Outline

• General relativity

– Newtonian vs relativistic gravity

– Strong field gravity

– Numerical relativity: what and why

• General relativity as a Cauchy (initial value) problem

– Traditional 3+1 approach

– Well posedness

– Well posed formulations

• Computational considerations

• Selected examples

1. Interacting boson stars within conformally flat approximation (Mundim)

2. Accretion of (magneto-)fluids onto a black hole (Penner)

3. Black hole collisions (Pretorius)

• Future prospects
2



3

General Relativity

• Einstein (1916)

• Gravitational effects consequence of 
curvature of spacetime; curvature 
consequence of matter-energy distribution in 
spacetime

• Spectacular predictions

– Expanding universe

– Black holes

– Worm holes

– Gravitational waves
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Newtonian Gravitation

• Gravitational force on object with gravitational mass

• Single Newtonian potential (single field)    describes gravitational 
interaction

• Only objects with mass contribute to energy density

• Action at a distance: Changes in gravitational field propagate 
instantaneously to rest of universe
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Newtonian Gravitation

Assuming that the inertial mass and the 
gravitational mass are proportional, with 
the same proportionality constant for all 
materials:

Universality of Free Fall
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Relativistic Gravitation: General Relativity

Universality of free-fall elevated to Principle of Equivalence

• Locally, uniform gravitational field indistinguishable from uniform acceleration

• ―Real‖ gravitational effects show up in non-uniformities of gravitational field 
(curvature of spacetime)

• Gravitational field much more complicated than in Newtonian case, essentially 
need four potentials plus two ―wave fields‖

• No action at a distance: disturbances in the gravitational field travel at most at 
the speed of light, c

• All forms of energy act as sources for gravitational field
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The Metric

• The geometrical information about spacetime is completely encoded by 
the (symmetric) metric tensor

• Spacetime distance (squared) between nearby events is given by
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General Relativity – Field Equations
(G = c = 1)

• Einstein field equations

• If matter fields are present, their equations of motion must be solved 
in concert with the Einstein equations
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General Relativity—Strong Field Regime

• GR is an inherently non-linear theory: all forms of stress / energy / 
momentum, including those from the gravitational field itself 
contribute to spacetime curvature

• Highly non-trivial, dynamical solutions exist in the vacuum case

• Heuristically, two dimensionless parameters characterize strong-field 
regime
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Gravitational Radiation

• Gravitational waves: ―ripples‖ in the 
curvature of spacetime

• At least in weak field limit, very 
much analogous to electromagnetic 
radiation;  propagate at speed of 
light, transverse, two polarizations,  
frequency set by dynamics of 
source

The Laser Interferometer Gravitational Wave 
Observatory (LIGO) installation near Hanford 
WA.  Each interferometer arm is 4 km long. A 
similar instrument is located near Livingston 
LA (www.ligo.caltech.edu)

Cause periodic, quadrupolar variations in   
distance between freely falling objects (or induce 

strains in objects with interactions)
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Sources of Gravitational Radiation

• For efficient radiation, need (large) 
masses confined to regions 
comparable in size to their 
Schwarzschild radii,

• for Earth is about 1 cm!

• Also need redistribution of significant 
fraction of mass-energy at close to 
light speed

• Compact binary systems (BHs, 
neutron stars good candidates)

LIGO design sensitivities: (30-1000 Hz)

Phase 1: 

Phases 2-3:
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Gravitational Collapse and Black Holes

• Black hole: Region of spacetime from 
which no physical signal can escape 

• During collapse of matter and/or 
radiation, BH forms when gravitational  
field becomes strong enough to ―trap‖ 
light rays

• Surface of black hole is known as the 
event horizon

• Singularities (infinite, crushing 
gravitational forces) inevitable inside 
black holes

(From Wald, General Relativity, 1984)

Cosmic censorship hypothesis (Penrose):  Singularities resulting from 
gravitational collapse of ―reasonable‖ matter are generically hidden inside 
black holes; collapse does not generically produce ―naked singularities‖
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Why Numerical Relativity?

• DEFINITION: Computational solution of Einstein field equations for 
metric tensor, plus (field) equations of motion for any matter fields 
that have been coupled to gravity

• Motivation from several different areas

– Astrophysics

– Fundamental gravitational physics 

– Applied mathematics

– Computational science

• Difficult to make progress solving Einstein equations using traditional 
―closed form‖ (―analytic‖) techniques – in principle numerical relativity 
allows most general / realistic cases to be studied 
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Numerical Relativity: Key Challenges

• Formulation and discretization of equations of motion 

• Singularity avoidance when evolving BH spacetimes

• Computational demands

• NUMERICAL STABILITY

• Tie-in to observations (gravitational wave extraction)

• Shortage of personnel (lots of opportunities for new efforts!)
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General Relativity:  The Cauchy Problem
(3+1 / ADM formalism)

• View spacetime as stack of 3-
dim. spacelike hypersurfaces, 
labeled by time parameter, t

• Kinematical variables

– lapse fcn,    

– shift vector,

– Represent coordinate (gauge) 
freedom of theory

– Must be specified/fixed 
(explicitly or implicitly)
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• Dynamical variables

– 3-metric,

– extrinsic curvature, 

– Describe intrinsic geometry of hypersurfaces, as well as how surfaces are embedded in 
spacetime

SPACETIME = TIME HISTORY OF THE GEOMETRY OF AN INITIAL 
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General Relativity: The Cauchy Problem

• Einstein equations decompose into two classes

1. Evolution equations; schematically

Typically ―hyperbolic‖ in a given coordinate system

2. Constraint equations, schematically

Typically ―elliptic‖ in a given  coordinate system

• Constraint equations must be satisfied on each slice, including the 
initial slice; evolution equations preserve constraints in time (direct 
analogy with Maxwell equations)
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Einstein Equations: Traditional 3+1 Form

1. Constraint equations

2. Evolution equations
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Well-Posedness

• Need Cauchy problem to be well posed

•

• Essentially a statement of the stability of the solutions of the equations 
of motion and can be completely unrelated to stability of underlying 
physics; i.e. formulation of equations can be pathological in same 
sense  as attempting to solve a heat/diffusion with negative diffusion 
coefficient

• Standard 3+1 form of Einstein equations not well posed in general!

• (Numerical) solutions can be expected to ―blow up‖ even for initial 
data that should lead to globally regular/bounded continuum solutions

• Many ―pioneering‖ 3D (D refers to number of spatial dimensions on 
which fields/functions have non-trivial dependence) numerical 
relativity efforts (early ’90’s) were doomed due to this fact 18

Roughly: given initial data (0, )and (0, ) satisfying constraints,i i
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Well-Posed Formulation I: BSSN
(Baumgarte/Shapiro/Shibata/Nakamura)

• Analysis of characteristic structure (hyperbolicity) of standard 3+1 
form suggests that mixed spatial derivatives of the 3-metric in the Rij

term are responsible for difficulty

• BSSN approach circumvents this problem through introduction of 
auxiliary variables which are functions of the first spatial derivatives of 
the 3-metric

• Also employs ―conformal‖ decomposition techniques pioneered by 
Lichnerowicz in the 1940’s and developed in the 70’s and 80’s by York 
and others

– Can view as a ―spin decomposition‖ of dynamical degrees of freedom of the 
gravitational field

• Spin-0 (trace), spin-1 (longitudinal) pieces: related to coordinate 
invariance (gauge symmetry of theory), conservation laws 
(conservation of energy, 3-momentum)

• Spin-2 (transverse traceless): related to radiative degrees of freedom

– Transforms messy general differential operators into simpler, well-behaved 
ones

19



BSSN Approach

• Definitions

• Equations of motion take the form

where the source functions, S, do not explicitly involve the mixed 
second spatial derivative terms 20
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Well Posed Formulation II: Generalized Harmonic
(Friedrich, Garfinkle, Pretorius)

• Harmonic coordinates

• Yields well-posed formulation of Einstein equations, used to great 
advantage by Choquet-Bruhat  in ’50’s in proving local existence and 
uniqueness of solutions

• Sacrifices too much coordinate freedom: once coordinates and time 
derivatives are fixed at t=0, they are fixed for all future and past times

• Minimal flexibility to adapt coordinates, particularly time coordinate 
(slicing condition), in response to evolution

• Coordinate singularities tend to develop, especially when gravitational 
field is strong (black holes, e.g.)  
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Generalized Harmonic (cont.)

• IDEA: Choose

where gauge source functions,      are viewed as specified quantities, 
with no explicit dependence on second derivatives of the metric

• Einstein equations become

• System prone to instabilities (―constraint violating modes‖), add 
constraint damping terms
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Computational Considerations

• Smoothness of solutions plays a key role 

– Determines how effective numerical solutions are, and how efficiently they 
can be computed

– Dictates appropriate numerical approaches

• Types of solutions

– Everywhere smooth (scalar, vector, tensor fields)

• Finite difference, finite element, finite volume, spectral

• In principle can achieve exponential convergence as function of 
computational work, W

– Piecewise smooth (compressible fluids – shocks , but flow non-turbulent)

• Finite volume methods based on integral formulation of equations and 
weak solutions preferred

• Careful attention to characteristic structure required

• Convergence typically power law in W, with reduced rate near shocks
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Computational Considerations

• Types of solutions (cont.)

– Non-smooth (turbulent flows)

• Extremely challenging to simulate, many open questions, no completely 
satisfactory approach

• Adaptive mesh refinement (AMR)

– Significant range in relevant spatial/temporal scales (factor of 100 or more 
for BH collisions)

– Need methods where the discretization scale (mesh space) is allowed to vary 
from place to place in the solution domain in response to development of 
solution features

– Is now routinely used in multi-dimensional numerical relativity computations 
and has been instrumental in allowing most of the 3D calculations to be 
performed at all

– Will show example of the technique later 
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Computational Considerations

• Parallelization and high performance computation

– Finite difference and finite volume codes readily parallelized (in principle), 
due to locality of interactions

– Exhibit good scaling: time to run fixed computation on N processors (cores) 
goes like 1/N

– Typical calculations now run on 100’s to 1000’s of processors for several 
days

– Software packages available to shield ―users‖ from details of parallel 
implementation (CACTUS, PARAMESH, PAMR/AMRD, …)

• Symbolic computation

– Equations of motion for mutli-dimensional computations in numerical 
relativity tend to be extremely complicated

– Deriving, discretizing, implementing are all error-prone processes

– Symbolic computation packages / techniques can be used to great 
advantage 25



Selected Examples
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Bruno Mundim

BSc, MSc: University of Brasilia

PhD Thesis: UBC 2010

Numerical Studies of Boson Star 
Binaries

Current Position

PDF at Rochester Institute of 
Technology with Manuela 

Campanelli
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Boson Stars

• Coupled Einstein-Klein-Gordon equations

•

Find spherically symmetric, stable, localized 
solutions by choosing ―Schwarzschild-like‖ 
coordinates

and adopting ansatz
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Conformally Flat Approximation to Einstein 
Equations

• 4-metric can be written as

• Conformally flat approximation: Demand

• Time slicing condition
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Conformally Flat Approximation (cont.)

• Unknowns / Equations

• Solve together with Klein-Gordon equation for scalar field – no 
independent dynamics of gravitational field (no use of evolution 
equations for extrinsic curvature, Kij)
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Interacting Boson Stars
1. Merger Forming Rotating Star

0
0.7v 



Interacting Boson Stars
2. Long Term Orbital Motion
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Jason Penner

PhD Thesis: UBC 2010

Numerical Analysis of General 
Relativistic 

Magnetohydrodynamics

Current Position

PDF at Southampton University 
with Nils Andersson 
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(Magneto)-Hydrodynamic Accretion onto Black 
Holes

• Solves equations of general-relativistic (magneto)-hydrodynamics for 
scenarios describing wind accretion onto a black hole

– Geometry is fixed (Schwarzschild/Kerr for non-rotating/rotating)

– Black hole moves at constant velocity through uniform fluid

• To reduce computational cost considers following ―2D‖ problems

– Axisymmetric accretion

– Thin disk accretion

• Uses finite-volume, Gudonov-type methods (High Resolution Shock 
Capturing (HRSC) schemes), so that shocks and other types of waves 
(rarefaction, contact discontinuities) are accurately treated 



Axisymmetric Accretion
(Unmagnetized)
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Thin Disk Accretion 
(Magnetized)
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Frans Pretorius

PhD Thesis: UBC 2002

Numerical Simulations of 
Gravitational Collapse

Current Position 

Assistant Prof. Dept of Physics, 
Princeton Univ.
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Singularity Avoidance: Black Hole Excision

• To avoid singularity within black hole, exclude 
interior of hole from computational domain 
(Unruh)

• Problem: event horizon is globally defined,
location unknown until complete spacetime 
geometry is in hand 

• Apparent horizon functions as ―instantaneous 
horizon‖ can be located at any instant of time

• Excise somewhat within apparent horizon

• Used in calculations showed here

• NOTE: ―Moving punctures‖ technique is an 
alternate approach that has also been highly 
successful



Pretorius’ Black Hole Collision Code
Key Features

• Uses generalized harmonic approach

• Implements constraint damping: crucial for long-time stability

• Uses excision to avoid singularities

• Maps spatial infinity to finite coordinate distance so that approximate 
boundary conditions based on large-distance behaviour of gravitational 
field (asymptotic flatness) are not required

• Uses adaptive mesh refinement (AMR) to efficiently deal with 
significant range of length-time scales in problem

• Code runs efficiently in parallel on 100’s to 1000’s of processors

39



Complex code!!
(Generated via symbolic algebra package)

40About 100,000 lines of this!! (Much of it to verify correctness of solution)



Black Hole Collision
(―Lapse function‖)
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Black Hole Collision 
(Gravitational Radiation)

42
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Black Hole Collisions
Computed Gravitational Radiation Waveform



Sample Adaptive Mesh Structure
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Looking to the future

• Black hole collisions (inspiraling):

– Large parameter space (masses, spins) still to be explored

– Individual calculations still expensive, plagued by ―curse of dimensionality‖

• Black hole collisions (generic):

– High energy ―scattering‖ events, although astrophysically implausible, may 
yield insight into fundamental issues in strong field gravity

– Tie-in to particle physics (black hole production at the LHC?)
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Looking to the future 

• Neutron stars

– NS-NS and NS-BH collisions

– Realistic equations of state

– Magnetic fields

• Fundamental issues

– Continued testing of cosmic censorship hypothesis

– Detailed nature of singularities inside black holes and in cosmological setting

– Higher dimensional black objects (black strings, Saturns, …)

– Clues for ―Theory of Everything‖ (quantum gravity, string theory …)
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Opportunities

• Many open problems, relatively few practitioners

• Expertise required (& developed) in many different areas

– Theoretical general relativity / differential geometry

– Numerical analysis

– Software engineering

– High performance computation

– Scientific visualization

– Data analysis

• Developments in computer hardware, software, algorithms will 
continue to drive field, make it increasingly accessible provided 
personnel are available

47
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AND THE MORAL IS …


