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Numerical Relativity
Goals

Simulation of space-time without and with sources
Simulation of the gravitational field without and with sources

Astrophysically relevant, dynamical, gravitational-radiation-
producing spacetimes of particular interest,

Must solve field equations in 3 space-dimensions plus time

® Physical Requirements for Efficient Radiation

o (Large) masses confined to regions comparable in size to
their Schwarzschild radii, Rg:

2G
RS——2M
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L —15x1077 2 =30+
c g Mg

G =6.67 x 107N m?/kg? c=3.00 x 103m/s

Rg for Earth is about 1 cm!

o Internal redistribution of significant fraction of energy at
speeds approaching speed of light, ¢



LIGO Site 1: Hanford WA
(http://www.ligo-wa.caltech.edu/)

LIGO = Laser Interferometer Gravitational-Wave Observatory

® Some Vital Statistics
o Interferometer arms: 4 km
o Sensitivity band: ~ 30 to 1000 Hz
o Phase I sensitivity: 6L /L ~ 1.0 x 10721

o Phase II sensitivity: 6L/L ~ 1.0 x 10723



LIGO Site 2: Livingston LA
(http://www.ligo-la.caltech.edu/)




Numerical Relativity
Goals

® Ideal Candidates— “Compact Binaries”
o Black hole—black hole binary (for BH, R = Rg)
o Black hole—neutron star binary
o Neutron star—neutron star binary

e Not-so-astrophysically relevant but physically motivated model
problems also of interest, focus of my past research

o No experimental GR
o Possibility for “computational laboratories”

o0 Good vehicle for infrastructure & algorithm development

Typical Model Problem

® Reduced spatial dimensionality
(spherical, 1 4+ 1, axisymmetric, 2 4+ 1)

e “Simple” matter: typically scalar field instead of perfect fluid

e Key non-linear features retained (e.g. black hole formation)



Numerical Relativity
Challenges
® | arge computational requirements
o0 Back-of-the-envelope estimate for single 2 BH collision:
1 CPU week on 1 Tflop/s system
e Physical interpretation of results (incl. visualization)
o Large number of dynamical variables

o Dynamical vbls tend to be tensor components, so so often
have no intrinsic physical interpretation per se

o No “lab” for intuition

e Coordinate Freedom

o Prescription for coordinatization of space-time must be
given, can not assume to be known a prioir, as in non-
general-relativistic dynamics.

o Bad prescription of coordinates can (and often does!)
lead to encounters with physical or coordinate singulari-
ties.

® Singularity Avoidance
o BH space-times generically contain physical singularities;

must be avoided or dealt with in a special fashion

e STABILITY (Convergence)



Equations of Motion (Schematic, No Matter)

e Fundamental variables: all functions of (x,vy, z,t))
Latin indices ¢, 7, - - range over 1,2, 3

gij, Kij (646 =12fields) «a, ' (14 3= 4 fields)

e Evolution equations: (“hyperbolic”, use 4 to 12)

0gij
gt] = —2aK;; + D; 8 + D; B
OKij K
8t = LBKU — DZ'DjOé + « (RU — 2KZ]€K j —+ KZJK)

where R;; is the 3-Ricci tensor, K = K*;, L3 is the Lie (con-
vective) derivative along B", and D, is a covariant derivative

e Constraint equations: (“elliptic”, use 0 to 4)

Culgij, Kij] =0 p=0,1,2,3

e Coordinate conditions: (algebraic,elliptic,hyperbolic, need 4)

Fula, 8% gi, Kij] = 0



Equations of Motion
(Time-independent)

e Constraint equations must be satisfied by initial data
(i,e. att =0

o Industry developed over past 15 yrs for solving IVP for
2-BH problems

o State-of-the-art quite advanced, typically uses multigrid
in “body-adapted” coordinates, ICGC and relatives also
widely used

o Parts per million accuracy possible via Richardson extrap-
olation techniques

e Constraint equations can be used at £t # 0 in lieu of evo-
lution equations for certain dynamical variables (constrained
evolution)

e Coordinate conditions often result in time-independent equa-
tions for kinematical variables «, (3*

e Observation: Even when “best available” algorithms are used,
solution of “elliptics” often dominates state-of-the-art NR sim-
ulations



Visualization of Initial Data for 2 Black Holes
( Cook et al, Phys. Rev. D, 1993 )

Initial Configuration

Binary Black Heles: Generic




Equations of Motion
(Time-dependent)

9gs;
gtj = —2aK;; + D; 8; + D; 5;
8Kij k

® Many basic mathematical questions concerning structure of
these specific equations (3 4+ 1 equations) remain, in particu-
lar, in general they are not rigorously hyperbolic

® Much recent work aimed at finding genuinely hyperbolic formu-
lations; some promising results, but no current clear advantage
relative to suitably massaged 3 4+ 1 equations

e Community tends to use O(h?) finite-differencing techniques
on global (uniform) mesh

o “Crank-Nicholson” schemes currently popular for 3 + 1
equations, typically solved iteratively

o Standard methods for flux-laws can be used with hyper-

bolic formulations (Lax-Wendroff, McCormack, - - )

e (IN)STABILITY remains chief problem, particularly in con-
junction with inner (black holes) and outer boundaries



Equations of Motion
Berger & Oliger Style AMR
Berger & Oliger JCP 53 (1984) 484-512

Typical black hole problem requires significant dynamical range

Aradiation ~ 100 RBH

Some form of adaptive mesh refinement will be crucial for
efficient 3-D computations

Strategy: Implement some sufficient algorithm, don’t worry if
it isn't optimally efficient as long as scaling of computational
time with “physical process” is roughly linear.

“Minimal” Berger & Oliger algorithm (no rotation of sub-
grids) arguably sufficient provided features of interest (needing
resolution) remain predominantly volume-filling

Expected to be the case for general black hole interactions

Considerable past and current activity in numerical relativity
aimed at implementing and exploiting Berger & Oliger AMR
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Critical Phenomena in Gravitational Collapse
The Game

® Consider parametrized families of collapse solutions

e Parameter, p, controls degree of self-gravitation in evolution

L]

e Demand that family “interpolates’ between flat spacetimes
and spacetimes containing black holes:

o Low setting: no black hole forms
o High setting: black hole forms

Black hole formation “turns on” at some threshold value p*

Phenomena in near-threshold regime = Critical Phenomena



Critical Phenomena in Gravitational Collapse
Model Problem: Weak Field Behaviour (Linear Waves)

e Spherical symmetry: coordinates (¢,7,0, ), no dependence
on 6 or

e Metric: (“geometric units”: G =c=1)
ds® = —dt* + dr® + r* (d6” + sin®0 dp?)
® Scalar field equation of motion:

0> 0>
(¢ = 0 = ﬁ("@) = ﬁ("@)

e General solution: ingoing & outgoing waves:

ro(r,t) ~ u(r+t) + v(r—1t)

e Initial data: give ingoing profile, f (), outgoing profile, g ()

r¢ (r,0) = f(r) + g(r)
0

Sro(n0) = f'() — ¢ (7)



Critical Phenomena in Gravitational Collapse
Model Problem: Strong Field Behaviour

e Metric: In a particular coordinate system (generalization of
Schwarzschild system)

ds® = —a’(r,t) dt* +a’(r,t) dr* +r? (df* + sin0 dp?)

e (Auxiliary) scalar field variables:

2n) =2ty =29 ()



Critical Phenomena in Gravitational Collapse
Model Problem: Strong Field Behaviour

® Equations of motion:

PR R

e Total mass, M, of space-time is

M = m (o0, ) a(r,t)2:(1—M>_l

r

e Coordinate system cannot penetrate interior of black holes.
However, black hole formation clearly signaled in calculation

by:

2
M for some r=Rpyg =2Mppu

r



Critical Phenomena
(MWC, Phys. Rev. Lett., 1993)

® Near a critical point, the dynamics of the model problem is
characterized by:

o Exponential sensitivity to initial conditions

O Generation of structure on arbitrarily small scales

o “Echoing” behaviour (scale periodicity)

o Infinitesimal black hole mass at critical point

o Power-law scaling of black hole mass

o Universality

0 Rapid loss of information about initial conditions



The Impact of AMR

e Berger & Oliger (1984) algorithm with minor modifications for
non-hyperbolic equations: 3-level difference equations, with
explicit dissipation (Kreiss & Oliger), regridding via LTE esti-
mates

Absolutely crucial for discovery & understanding of phenomena
0 Generation of structure on arbitrarily small scales
o Exponential sensitivity to initial conditions

o Exponential sensitivity to discretization parameters near
critical point: roughing out critical point at low resolution
not feasible

o Critical evolution transient in nature

® Typical run parameters: (Critical configuration)

Coarsest grid has =~ 600 points in 7.
Use 7 additional levels of 5 : 1 refinement.

1012 events
107 events

107 spatial points:
2000 spatial points:

Uniform fine grid: = ~

In practice:

Computations almost exclusively interactive



I-D Adaptive Mesh Refinement
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Infrastructure for (Adaptive) Parallel Computations
Motivation & Goals

Observation: Numerical relativity codes have tended to be re-
markably homogeneous from a “high-level” point of view: Al-
most all have employed low order (second-order) finite differ-
ence techniques on a single mesh, and have had the following
structure:

Read (initial) state
for NUM_STEPS
for NUM_UPDATES & maybe until convergence
U (Grid Function(s)) -> Grid Function(s)
end for
end for
Write (final) state

Most of the hard work in developing a new code involves the
construction of stable, accurate updates, U

Also clear that significant dynamic range in black-hole prob-
lems such as binary coalescence means that adaptive-mesh-
refinement (AMR) algorithms essential for efficient computa-
tion

Ultimate goal: allow relativist to concentrate on developing
stable, uni-grid code on serial architecture: parallelism and
adaptivity to be “automatically” provided by the infrastruc-
ture



Infrastructure for Adaptive Parallel Computations

DAGH / GrACE

Manish Parashar (Rutgers) & J.C. Browne (UT Austin)

http://www.caip.rutgers.edu/ parashar/TASSL/

® Two main components

O

A set of programming abstractions in which computa-
tions on dynamic hierarchical grid structures are directly
implementable.

A set of distributed dynamic data-structures that support
the implementation of the of the abstractions in parallel
execution environments and preserve efficient execution
while providing transparent distribution of the grid hier-
archy across processing elements.

o Key Features

O

©)

O

©)

O

Transparent access to scalable distributed dynamic Ar-
rays, Grids, Grid-Hierarchies

Shadow grid-hierarchy for efficient error estimation (re-
gridding criterion)

Automatic dynamic partitioning and load distribution
Locality in face of mutli-level data (space-filling curves).

Some special support for multi-grid



Infrastructure for Adaptive Parallel Computations
DAGH / GrACE 2-D Wave Example (Schematic)

#include "GrACE.h"
#include "GrACEIO.h"

bb[0]=xmin; bb[1]=xmax; bb[2]=ymin; bb[3]=ymax;
shape [0]=Nx; shape[1]=Ny;

GridHierarchy GH(2,NON_CELL_CENTERED,1);
GH.ACE_SetBaseGrid(bb, shape);
GH.ACE_ComposeHierarchy() ;

GH.ACE_IOType (ACEIO_HDF_RNPL) ;

BEGIN_COMPUTE
GridFunction(2)<double> phi("phi",1,1,GH,ACEComm,ACENoShadow) ;

for( step++; step <= nsteps; step++ ){
forall(phi,tc,lev,c)
update( - -+ )
end_forall
phi.GF_Sync(tc+idt,lev,ACE Main) ;

}



Infrastructure for Adaptive Parallel Computations
CACTUS / PUGH
Paul Walker et al (MPI Potsdam)
http://www.cactuscode.org/

e Includes PUGH package, which implements DAGH-style memory
distribution/parallelization, but in a more compact C library,
and only for uni-grid applications.

® Provides users of CACTUS with automatic access to paral-
lelism.

e Code runs on essentially anything, and routinely is near or at
the record for highest-sustained Gigafloppage on *“realistic”
problem: From http://www.ncsa.uiuc.edu/access.html

"In June [99], the team virtually owned NCSA’s 256-processor
Origin2000 for a capability computing run of more than two
weeks. By the time Suen and Seidel had finished their
simulations, they had output nearly a terabyte of data and

logged an astonishing 140,000 CPU-hours on the Origin2000."

e Significant level of support from MPI Potsdam and NSCA



The vn.physics.ubc.ca PIII/Linux Cluster
Doc/VN/index.html

e 280K CFI On-going New Opps. App., 4/29/99 (UBQC)
Doc/CFI.april99/index.html

Affleck (Phys. & Astro.)
Ascher (Comp. Sc.)
Choptuik* (Phys. & Astro.)
Patey* (Chem.)

Salcudean™ (Mech. Eng.)
Thachuk* (Chem.)

Unruh (Phys. & Astro.)

0O O 0O 0O 0o O o

e Patterned after Patey/Thachuk’'s machine (currently 23 com-
pute nodes and one front-end, roughly half done), asks for

o 64 X Dual 450 Mhz PIII/512 Mb/10 Gb (no CD ROM,
keyboard, mouse, monitor) “compute nodes” 220K

o 2 X Dual 450 Mhz PIII/512 Mb with additional periph-
erals “front-end nodes” 10K

o 1 X HP-4000M Switch with 4 expansion modules — 72 (!)
100FDX ports (3.6 Gb/s back-plane) 7K

o 13 () X APC Smart-UPS 1400 14K



The vn.physics.ubc.ca PIII/Linux Cluster

® 650K CFI On-going New Opps. App., 9/15/99 (CFI)
Doc/CFI/index.html

Affleck (Phys. & Astro.)
Ascher (Comp. Sc.)
Bushe™ (Mech. Eng.)
Choptuik™ (Phys. & Astro.)
Patey* (Chem.)

Salcudean™ (Mech. Eng.)
Thachuk* (Chem.)

Unruh (Phys. & Astro.)

0O 0O 0O 0O o 0O o ©°

o ASKS FOR “Cluster 1" AND

e “Cluster 2" (focus on coarse-grained parallelism)

0 48 X Single 600Mhz Alpha/2 Mb/256 Mb/10 Gb 230K
o Myrinet (1000 Mb) Switch solution 32K
0 8 X APC Smart-UPS 1400 9K

e Ultimate level of funding still somewhat unclear, but have been
proceeding on the basis that we'll get something close to 650K
total



The vn.physics.ubc.ca PIII/Linux Cluster

280K for vn advanced against future CFI funding 8/27

9/99—-10/99 spent evaluating machines, finding good home,
setting things up with Purchasing

Request for bid sent out 10/7 with closing date 11/2, equip-
ment to be delivered 16 nodes per week, with first 16 (and
front ends) due 11/9, last 16 due 11/30

Vendors: Varsity, UBC Bookstore, AE

WHAT WE HAVE (last 6 compute nodes due today)

128 (+12) 450Mhz PIIIs, 32 (+1.5) Gb RAM, 0.5 Tb disk

0 64 compute: 2 x 450Mhz PIII/512 Mb/10 Gb IDE 180k
o 3 front-ends: 2 x 450Mhz PIII/512 Mb/34 Gb SCSI 20K
0 1 X HP-4000M Switch: 7K
0 4 X APC Matrix 3000M with 8 PDUs: 19K

Estimated total expenditures: 250K



The vn.physics.ubc.ca PIII/Linux Cluster

e Comparison with zodiac.chem.ubc.ca (zd)

o zd compute node: 2 x 450 Mhz PIII 256 Mb/4 Gb IDE
O vn compute node: moomon 512 Mb/12 Gb IDE

o zd: 1 front-end: 2 x 450 Mhz PIII 512 Mb/20 Gb SCSI
o vn: 3 front-ends: oo 512 Mb/34 Gb SCSI

o vn: 3 DATS (SCSI)
o zd: 1 DAT (SCSI)

o zd: Running in custom-built security caging in air-conditioned,
power-reconditioned room in Chemistry.

o vn: Running in secure machine room in Klinck (Old CS),
so far have paid 6K for back-bone, 1K for electrical, will
pay 7K annual “rent”; 2-yr agreement starts tomorrow

o zd: Connect to/from “outside-world” via front-end only.
o vn: Connect to/from “outside-world” via any node.

o zd currently running DQS queueing system.
o vn currently running anarchy :=) queueing system.



The vn.physics.ubc.ca PIII/Linux Cluster

® Assembly & Software Installation Team
o Jason Ventrella
o Inaki Olabarrieta
o Choptuik

o Unruh

e At vendor (3747 W 10th)
o BIOS settings
o “Everything” (!) install of Mandrake 6.1 at vendor’s site

o Network configuration including IP address assignment

e At our site (Klinck Building)

o Plug node in, attach to network, power up

O Secondary software installation

® On node N hardware failure (5 or 6 so far)

o Swap identities of vnN and vnNMAX (either via disk swap
or software), send vnNMAX to Varsity.

o Decrement vnNMAX and update system files.



First 16 compute nodes & 3 front-ends

vn.physics.ubc.ca:
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Back-end View




The vn.physics.ubc.ca PIII/Linux Cluster
Applications Run to Date

e ‘shell-level” parallelism

o Ethan Honda (UT Austin grad stud): detailed parameter
space survey of “oscillons” (typically 40 4+ processes)

o Roman Petryk (UBC grad stud): quantum gravity in-
spired calculations (typically 40 + processes)

® MPI-based parallelism

o Luis Lehner (UT Austin postdoc), Mijan Hug (Penn State
RA): 3D black hole calculations
(81 x 81 x 81 spends 11

o Roman Baranowski, UBC Chemistry postdoc (?7)

MANY MORE TO COME!



The vn.physics.ubc.ca PIII/Linux Cluster
The anarchy queueing system

vnfel % ruptime | grep -v down | grep -v vnfe | sort -n +6

vnl0 up 9+11:34, O users, load 0.00, 0.00, 0.00
vnll up 9+11:34, O users, load 0.00, 0.00, 0.00
vnl3 up 9+11:34, O users, load 0.00, 0.00, 0.00
vnl5 up 9+11:31, O users, load 0.00, 0.00, 0.00
vn20 up 9+11:32, O users, load 0.00, 0.00, 0.00
vn21 up 9+11:32, O users, load 0.00, 0.00, 0.00
vn22 up 9+11:32, O users, load 0.00, 0.00, 0.00
vn23 up 9+11:28, 0 users, load 0.00, 0.00, 0.00
vn24 up 9+11:28, 0 users, load 0.00, 0.00, 0.00
vn26 up 9+11:29, 0 users, load 0.00, 0.00, 0.00
vn35 up 9+11:27, O users, load 0.00, 0.00, 0.00
vn39 up 9+11:27, O users, load 0.00, 0.00, 0.00
vn40 up 9+11:28, 0 users, load 0.00, 0.00, 0.00
vn4l up 9+11:28, O users, load 0.00, 0.00, 0.00
vn42 up 9+11:28, 0 users, load 0.00, 0.00, 0.00
vn43 up 4+01:51, O users, load 0.00, 0.00, 0.00
vn44 up 4+22:16, 0 users, load 0.00, 0.00, 0.00

vn8 up 9+11:34, O users, load 0.00, 0.00, 0.00
vn9 up 9+11:34, O users, load 0.00, 0.00, 0.00
vn33 up 9+11:26, O users, load 0.97, 0.91, 0.82
vn38 up 8+17:48, O users, load 1.82, 1.91, 1.89

vnb53 up 4+21:31, O users, load 2.27, 2.20, 2.08



