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The dynamical study of a massive scalar field in the Newtonian regime could
produce some interesting insights into the nature of bosonic matter. Since most
of the dark matter in the universe is believed to be nonbaryonic in nature, the
study of bosonic matter in the form of a massive bose condensate, boson stars,
could lead into insights into dark matter. In this dissertation, I discuss a nu-
merical study of the dynamics of a massive complex scalar field in three spatial
dimensions. As the general relativistic equations are too complex to solve as
part of an initial study, I move to the Newtonian regime where the behavior
of the scalar field is described by the time dependent Schrodinger equation
coupled with Newtonian gravity. I use an alternating directions implicit (ADI)
finite difference method use to solve the Schrodinger equation while using a
multigrid method to solve Poisson’s equation . I then discuss how to check the

convergence of the difference equations with the unknown analytic solution; a

vi



technique particularly useful due to the richness of the solution space of differ-
ence equations. | show that the difference solutions in this dissertation are valid
where the matter distribution is well resolved and the approximate boundary
conditions have little effect on the order of convergence of the interrior finite
difference equations. Using boundary conditions which are valid at infinity
on a finite computational domain causes errors in the solution. To stem this
problem for the Schrodinger equation 1 developed a new technique for allowing
matter to flow out of the computational domain and show the method is shown
to be quite robust even in three dimensions. Finally, a numerical study of the
dynamics of boson stars is given. It is found that the stars exhibit behavior

similar to that of a point Newtonian mass as well as a collisionless fluid.

Vil



Table of Contents

Acknowledgements
Abstract

List of Tables

List of Figures

Chapter 1. Introduction

1.1 The Problem . . . . ... .. . ... . . ...
1.2 Physical Motivation . . . . . ... .. ... ... ... ... ...
1.3  Computational Motivation . . . . .. .. ... ... ... .....
1.4  The Contents of this Dissertation . . ... ... ... .......

Chapter 2. Derivation of the Physical Problem

2.1 Derivation of the Field Equations . . . . . ... ... .. .....
2.1.1 Einstein’s Equations . . . . .. ... ... ... .......
2.1.2  The Klein-Gordon Equation . . . ... .. ... ... ....

2.2 Weak Field Limits . . . . .. . ... . .
2.2.1 Newtonian Potential . . . . .. ... ... ... ... ....
2.2.2  The Schrodinger Equation . . . ... ... .. ... ... ..
2.2.3 Mass Conservation . . . . .. ... ...

2.3 A Hydrodynamic Model for Schrodinger’s Equation . . . . . . ..

Chapter 3. Finite Difference Solutions
3.1 Generation of Initial Data . . . . . . . ... ... ... .......
3.2 Finite Difference Equations . . . . . . . ... ... 00,

3.3 Convergence of the Finite Difference Solution . . . .. .. ... ..

Vil

vi

x1

10
11
11
13
13
13
15
16
17



Chapter 4. Annihilation Boundary Layers 50
4.1 One Dimensional Annihilation Boundary Layer . . . . . . . .. ... 52
4.2 Annihilation Boundary Layers for the Spherically Symmetric Problem 63
4.3 Annihilation Boundary Layers for the Three Dimensional Problem . 73

Chapter 5. Physical Results 90
5.1 Radial and Mass Scaling of Boson Stars . . . . .. ... ... .. .. 90
5.2 Boson Stars with Linear Velocity . . . . ... ... ... ... ... 95
5.3 Boson Stars in a Central Potential . . . . . . . ... ... ... ... 107
5.4 Boson Stars with Angular Momenta . . . . . . ... ... ... ... 117
Chapter 6. Conclusion 125
Bibliography 129
Vita 136

X



3.1

3.2

4.1

List of Tables

The results of the evolution of a single boson star with an initial
central density of 1.0 centered in a spatial mesh of width 32.0
on a side for a varying number of mesh points. . . . . . . .. ..

Definitions of operators and variables used in the text. . . . ..

Definition of the reflection coefficient . . . . . . . . . . .. ...



3.1
3.2
3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

List of Figures

A typical density p from solution of the eigenvalue problem.
A typical potential V' from solution of the eigenvalue problem. .

Time evolution of the real part of the scalar field ¢. Limits:
computational domain (z,y,z: -8 to 8); frame domain (r: 0 to
8); frame range (Grear: -1 to 1), . oo Lo

Time evolution of the imaginary part of the scalar field ¢. Limits:
computational domain (z,y,z: -8 to 8); frame domain (r: 0 to
8); frame range (Gimaginary: -1 to 1)« . o o o 0oL

Time evolution of the density of the scalar field ¢¢*. Limits:
computational domain (z,y,z: -8 to 8); frame domain (r: 0 to

8); frame range (¢¢*: 0to 1.1). . . .. .. .. ... L.

Time evolution of the Newtonian potential V. Limits: computa-
tional domain (z,y, z: -8 to 8); frame domain (r: 0 to 8); frame

range (V:-1.5t00). . .. ... . . oo

Convergence factors, T;opny4, for the real part of the scalar field ¢

from the solution of the spherically symmetric difference equations.

Convergence factors, Ty, for the real part of the scalar field ¢

from the solution of the spherically symmetric difference equations.

Convergence factors, Ty, for the real part of the scalar field ¢

from the solution of the spherically symmetric difference equations.

Convergence factors, Ty, for the real part of the scalar field

¢ from the solution of the three dimensional difference equations.

Convergence factors, Ty, for the real part of the scalar field

¢ from the solution of the three dimensional difference equations.

Time evolution of the matter distribution, ¢¢*, for the one di-
mensional Schrodinger equation on the larger computational do-
main. Limits: computational domain (z: -512 to 512); frame
domain (z: 0 to 256); frame range (p: 0to 1). . . . .. .. ...

Time evolution of the matter distribution, ¢¢*, for two solutions
of the one dimensional Schrodinger equation, one on the larger
computational domain and the other on the smaller computa-
tional domain without an annihilation layer. Limits: computa-
tional domain-thin line (z: -128 to 128) -thick line (z: -512 to
512); frame domain (z: 0 to 256); frame range (p: 0 to 1).

xi

25
25

45

46

47

48

49

56



4.3 Time evolution of the matter distribution, ¢¢*, for the one di-
mensional Schrodinger equation on the smaller computational
domain with an annihilation layer. Limits: computational do-
main (2: -128 to 128); frame domain (z: 0 to 256); frame range
(p: 0 to 1); boundary layer begins at =112 . . . . . . ... ..

4.4 Time evolution of the matter distribution, ¢¢*, for two solutions
of the one dimensional Schrodinger equation, one on the larger
computational domain and the other on the smaller computa-
tional domain with an annihilation layer. Limits: computational
domain-thin line (z: -128 to 128) -thick line (z: -512 to 512);
frame domain (z: 0 to 256); frame range (p: 0 to 1); boundary
layer begins at x=112. . . . . . . . ... ... 0L

4.5 One Dimensional Schrodinger Equation: Reflection Coefficient
versus H forw =4. . . . . .. ... o

4.6 One Dimensional Schrodinger Equation: Reflection Coefficient
versus H forw =8. . . . . . . ... o

4.7 One Dimensional Schrodinger Equation: Reflection Coefficient
versus H forw =16. . . . .. ... ... o oL

4.8 Time evolution of the matter distribution, r?¢¢* for the spher-
ically symmetric Schrodinger equation on the larger computa-
tional domain. Limits: computational domain (r: 0 to 128);

frame domain (r: 0 to 32); frame range (r*¢é*: 0to 2) . . . . .

4.9 Time evolution of the matter distribution, r?¢¢*, for the spher-
ically symmetric Schrodinger equation on the smaller computa-
tional domain without an annihilation layer. Limits: computa-
tional domain (r: 0 to 32); frame domain (r: 0 to 32); frame

range (r2¢d™: 0t02) . . . . ...

4.10 Time evolution of the matter distribution, r?¢¢* for the spher-
ically symmetric Schrodinger equation on the smaller computa-
tional domain with an annihilation layer. Limits: computational
domain-thin line (r: 0 to 32); thick line (r: 0 to 128);frame do-
main (r: 0 to 32); frame range (r?¢¢* : 0t02); boundary layer
begins at x=26 . . . . .. ... oo

4.11 Spherically Symmetric Schrodinger Equation: Reflection Coeffi-
cient versus H forw=1.. ... .. ... ... ... ... ...

4.12 Spherically Symmetric Schrodinger Equation: Reflection Coeffi-
cient versus H forw=2.. . . . . . ... ...

4.13 Spherically Symmetric Schrodinger Equation: Reflection Coeffi-
cient versus H forw=4. . . . . .. ... ... 0.

xii



4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

Three solutions of dM /dx showing the matter distribution collid-
ing with and going through a side of the smaller computational
box. Limits: computational domain: reflection and absorption
solutions (z,y, z: -32 to 0), test solution on larger computational
domain (z: -32 to 32; y,2: -32 to 0); frame domain: (z: -32 to
16); frame range (dM/dz: 0 to 12); boundary layer starts at

To= =4 s

Three solutions of dM/dy showing the matter distribution collid-
ing with and going through an edge of the smaller computational
box. Limits: computatlonal domain: reflection and absorption
solutions: (z,y,z: -32 to 0), test solution on larger computa-
tional domain (z, y -32 to 32; z: -32 to 0); frame domain: (y:
-32 to 16); frame range (dM/dy 0 to 12); boundary layer starts
at y=—4 . ..

Three solutions of dM/dz showing the matter distribution col-
liding with and going through a corner of the smaller compu-
tational box. Limits: computational domain: reflection and ab-
sorption solutions: (z,y,z: -32 to 0), test solution on larger
computational domain (z,y,z: -32 to 32); frame domain: (z:
-32 to 16); frame range (dM/dz: 0 to 12); boundary layer starts
at z=—4 . .

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 2 and matter distribution hitting side of com-
putational box. . . .. .. ... L L

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 4 and matter distribution hitting side of com-
putational box. . . .. .. ... Lo L

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 6 and matter distribution hitting side of com-
putational box. . . .. .. ... Lo L

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 2 and matter distribution hitting edge of
computational box. . . . . ... .. L Lo

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 4 and matter distribution hitting edge of
computational box. . . . . ... ... 0 Lo

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 6 and matter distribution hitting edge of
computational box. . . . . ... ... Lo

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 2 and matter distribution hitting corner of
computational box. . . . . ... ... Lo

X111



4.24

4.25

5.1

5.2

3.3

5.4

3.5

5.6

5.7

5.8

5.9

5.10

5.11

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 4 and matter distribution hitting corner of
computational box. . . . . ..o oo 88

Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 6 and matter distribution hitting corner of
computational box. . . . ... oo oo 89

Scaling of the radius of a boson star as a function of the central

density. . . ..o 93
Scaling of the mass of a boson star as a function of the central
density. . . .. L 94
Trajectories of a Newtonian point mass and a boson star with
initial central density of p = 1. Both have an initial velocity
v=wov, =0.1. . . . . 99
Trajectories of a Newtonian point mass and a boson star with
initial central density of p = 1. Both have an initial velocity
v=wv,=1.0. . . . . 100
Trajectories of a Newtonian point mass and a boson star with
initial central density of p = 1. Both have an initial velocity
v=wv,=10.0. . . . . 101

Contour plots of mass density at different times for a boson star
given initial velocity v, = 0.1. The contours are at densities of
0.5,0.1,0.05,...5 x 107¢ and are highest in the center of the star.102

Contour plots of mass density at different times for a boson star
given initial velocity v, = 1.0. The contours are at densities of
0.5,0.1,0.05,...5 x 107° and are highest in the center of the star.103

Contour plots of mass density at different times for a boson star
given initial velocity v, = 10.0. The contours are at densities of
0.5,0.1,0.05,...5 x 107% and are highest in the center of the star.104

Difference of the trajectory of a Newtonian point mass and a
boson star with an initial central density of p = 1 and an initial
velocity v = v, = 1.0 for three different computational mesh
resolutions. . . . . ... 105

Trajectories of a Newtonian point mass and a boson star with
initial central density of p = 1. Both have an initial velocity
v, = 0.1. The trajectory of the boson star was made from a
computation using a Dirichlet boundary condition. . . . . . .. 106

Trajectories in the xy plane of a boson star with an initial central
density, p = 1 and a Newtonian point mass whose trajectories
are curved because of the central potential centered at the origin.
Both the star and point mass star start with an initial velocity

of v, =0.25. . . . . 111

x1v



5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Trajectories in the xy plane of a boson star with an initial central
density, p = 1 and a Newtonian point mass whose trajectories
are curved because of the central potential centered at the origin.
Both the star and point mass star start with an initial velocity
of v, =1.0. . . . . e 112

Trajectories in the xy plane of a boson star with an initial central
density, p = 1 and a Newtonian point mass whose trajectories
are curved because of the central potential centered at the origin.
Both the star and point mass star start with an initial velocity

of v, = 2.5, . . e 113

Contour plots of mass density at different times for a boson star
given initial velocity v, = 1.0 whose trajectory is influenced by
the central potential centered at the origin. The contours are at
densities of 0.5,0.05,...5x 107 and are highest in the center of
thestar. . . . . . .. 114

Contour plots of mass density at different times for a boson star
given initial velocity v, = 2.5 whose trajectory is influenced by
the central potential centered at the origin. The contours are at
densities of 0.5,0.05,...5x 107° and are highest in the center of
thestar. . . . . . .. 115

Plots of the average z and y momenta as a function of time
for the boson star with an initial distance of 16 from center of
the central potential and an initial velocity in the x direction of

Uy =20, 0 L 116

Plot of the average angular momentum as a function of time
for a boson star set up initially as a ‘quantum whirlpool” for
quantized values of angular momenta. . . . . . ... .. ... .. 121

Movie of the density distribution of the N = 1 ‘quantum whirlpool’
along the x-axis at successive times with time step size of 12.5.

The first frame is ¢ = 0.0, and the last frame is ¢ = 187.5. The
domain goes from z = —32 to # = 32 and the range extends
fromp=00top=0.09. . ... ... ... ... 122

Movie of the density distribution of the N = 2 ‘quantum whirlpool’
along the x-axis at successive times with time step size of 1.25.

The first frame is ¢ = 0.0, and the last frame is ¢ = 18.75. The
domain goes from z = —32 to # = 32 and the range extends
fromp=00top=0.01. .. ... ... .. ... .. ... 123

Movie of the density distribution of the N = 5 ‘quantum whirlpool’
along the x-axis at successive times with time step size of 0.5.

The first frame is ¢ = 0.0, and the last frame is ¢t = 7.5. The
domain goes from =z = —32 to = 32 and the range extends
fromp=00top=0.01. ... ... .. ... .. ... 124

XV



Chapter 1

Introduction

1.1 The Problem

In this dissertation I discuss the numerical solution of a seemingly simple set

of coupled partial differential equations (PDEs):

m% - —;—mv2¢(x,t) + meV(x, 1)é(x, 1) (L.1)
V2V (x, 1) = dn (%)2 6(x, 1) (x, 1). (1.2)

where ¢ 1s a scalar field, V' is a Newtonian potential, m is the mass of the
scalar field, h is Planck’s constant, ¢ is the speed of light and G is the gravi-
tational constant. Equation (1.1) is the time dependent form of Schrodinger’s
equation, which describes the evolution of a massive complex scalar field in a
Galilean frame of reference, while the second is Poisson’s equation where ¢*V
is the Newtonian potential generated by a distribution of matter (m/h)* ¢¢*.
Upon first glimpse, one might ask, “Why study such a seemingly simple set of
equations?” Well, this being a dissertation in numerical relativity, one should

expect there to be both physical and computational reasons.

One physical motivation is that equations (1.1) and (1.2) are the weak

field limit of the general relativistic equations governing the behavior of a mas-



sive scalar field. Thus any solution of the general relativistic equations must
converge to solutions of (1.1) and (1.2) in the weak field limit. Also, since there
are currently no studies of the (3 + 1) dynamics of a massive complex scalar
field, a three dimensional numerical study of the field even in the Newtonian
regime is something that should be done. Another reason is dark matter. Since
the time dependent Schrodinger equation coupled with a gravitational poten-
tial describes zero temperature bosons in the Newtonian regime [26], and it is
believed that most of the dark matter in the universe is nonbaryonic in na-
ture [26], solutions of (1.1) and (1.2) could shed some “light” on the nature of
dark matter. Another reason is that when viewed on cosmological scales these
equations describe large scale structure formation with only slight modification

for an Einstein-de Sitter universe. [61]

There are also numerous computational reasons to study (1.1) and (1.2).
One is the need to examine optimal numerical finite difference techniques for in-
tegrating time dependent three dimensional PDEs because of the large number
of computations usually needed to computationally integrate most physically
interesting three dimensional problems while maintaining a low error (< 1%).

In the spirit of Brandt’s golden rule: [4]

The amount of computational work should be proportional to the
amount of real physical changes in the computed system.

There is a need to implement the finite difference algorithm used in this disser-
tation in an adaptive mesh format, and to speed up the computation of (1.1)
and (1.2) even more, parallel methods on multiple instruction multiple data

(MIMD) machines should be examined. There is also a need to examine how



to implement boundary conditions on a finite grid for time dependent PDEs
with infinite domains. All the above reasons validate the research discussed in
this dissertation. Also, because this work is supported by a Grand Challenge
grant, another reason for studying the time dependent Schrodinger equation
coupled with Poisson’s equation is that the numerical knowledge gained here
will contribute to the Computational Grand Challenge Problem of the coales-

cence of two black holes [37].

1.2 Physical Motivation

Understanding, the nature of dark matter is one of the biggest challenges in
astrophysics today. It holds implications for the existence of new exotic par-
ticles, is felt to be directly responsible for the formation of galaxies and could
help astrophysicists understand the birth of our universe as well as determine

its ultimate fate.[42]

Standard big bang cosmology posits the existence of a critical matter
density p..+ in the universe below which the universe will continue expanding
(ad infinitum); and above which the universe will recollapse upon itself. The
ratio of the density of luminous matter observed in the universe to the critical
density is:

Qlum = plum/pcrit < 0.01. (13)

There is evidence from Doppler shifts of spectral lines of stars and from 21ecm
radiation from neutral gas clouds of nonluminous matter in the halos of spiral
galaxies. [17, 47, 49, 50] The rotational velocity curves of these galaxies have
the same pattern. They portray galaxies as having a rapid rise in density from

the galactic center with the density becoming constant near the edge of the



luminous halo. These velocity curves lead to the prediction that:
Qhato > 0.03 — 0.1. (1.4)

There is also evidence of dark matter in the halos of irregular and elliptical

galaxies. Big bang nucleosynthesis predicts: [29]
0.011 < Qyuryon < 0.12 (1.5)

where the main uncertainty is due to the Hubble parameter [42] which enters
quadratically. Because the range of Qp4ryon lies within the range of Q4,,, the
dark matter in the halos of galaxies could be baryonic. In 1933, Zwicky found
that the mass needed to bind galaxy clusters was greater than the observed
luminous matter. [65] By use of the virial theorem, he estimated from his

findings for several clusters that:
Qetuster =~ 0.1 —0.3. (1.6)

From the Infrared Astronomical Satellite, sky surveys of infrared-selected galax-
ies indicate that the cluster mass density could be even higher than Zwicky’s
results and could be close to the critical density[26]. Limits for the deceleration
parameter and the age of the universe predict that 2,,;, has an upper limit of
2 while the currently popular inflationary models predict that the €,,,, = 1.
Finally, anisotropies of the Cosmic Microwave Background Radiation also give

indications that the dark matter content of the universe is sizable. [19]

All of this evidence suggests that a large portion of the matter in the
universe is nonbaryonic in nature. There are many possible candidates such as

heavy neutrinos, neutralinos, axions, etc. Some of these dark matter candidates



could be bosons. (e.g. axions, Higgs, scalar neutrinos,...) These scalar particles
could exist in diffuse gas clouds and compact objects and could also be mixed
with baryonic matter. Thus there is a need to study compact objects made
of scalar particles; such objects are commonly referred to as boson stars. To
obtain a realistic picture of these objects, one would need to know more about
the nature of the particles, such as their mass and the types of self-interactions
besides gravity. One of the problems of bosons as a dark matter candidate
is that bosons are predicted to be unstable and decay rapidly. This is not a

problem for boson stars as they are predicted to be:

macroscopic bose condensates formed by the vacuum expectation

value of the scalar field [26].

The actual physical particles are excitations over the vacuum state. Thus the

short lifetimes are for the particles and not for the vacuum expectation value

of the scalar field.

As mentioned in the previous section, equations (1.1) and (1.2) can sim-
ulate large scale structure with only slight modifications [61]. This is possible
because the Schrodinger equation can be used to approximate the collision-
less Boltzmann equation [55] where the squared modulus of the Schrédinger
wave function is the matter density. This is possible because of the equiva-
lence between the classical mechanics of point particles and wave mechanics
in the geometric optics limit. Thus the Schrodinger wave function ¢(x,t) con-
tains both position and momentum information as a position space function.
A distribution function F(x,p,t) containing phase space information can be

constructed by convolving ¢ with a window function centered at x, taking the



Fourier transform and squaring the result. So by constructing a particular dis-
tribution of matter and inserting it into the right hand side of (1.2), one can
perform many types of simulations such as stellar dynamics [15, 60] and large

scale structure formation from cold dark matter. [61]

1.3 Computational Motivation

Most computational techniques for solving initial boundary value problems [40]

lead to solving a set of linear equations:
Au™t! = Bu” (1.7)

where A and B are N x N arrays; u"*! and u” are vectors of length N at
times (n + 1)At and nAt respectively for some time step At; and one begins
with initial data usually at » = 0. Thus if one has N grid points in a three
dimensional mesh and increases the resolution of the grid by an integer factor
a to lower the truncation error of the difference equations, the total number
of linear equations used to solve the difference system grows by a factor of
a®. If one uses a direct solver such as LU decomposition, [43] the number of
calculations needed to solve a system of N linear equations is of order N3, This
means that the number of calculations and thus the time to solve the difference
equations grows by a® when increasing resolution by a factor of a. If one uses
an iterative method such as Gauss-Seidel, [63, 64] the number of calculations
needed to solve effectively the system of linear equations grow by a factor of o®
as one increases resolution. Optimal solvers such as ADI (alternating direction

implicit) [40] and multi-grid [59] take O(N) calculations to solve the N differ-

ence equations of the initial boundary value problem. Thus when increasing



resolution of the three dimensional differencing scheme by a factor of «, the
number of calculations needed to solve the system grows by o and stays in
linear proportion to the number of grid points. Since N is usually quite large
for the smooth resolution of three dimensional finite difference problems, there
is a need to use optimal solving techniques such as ADI and multi-grid when

solving these problems.

Since Cauchy problems have boundary conditions at infinity, a difference
solution of a Cauchy problem on a finite grid has the complication of how to
implement approximate boundary conditions. An initial approach is to use
extrapolated boundary conditions where the solution at the spatial boundaries
is found by simply extrapolating from points interior to the boundary. This
works fine when the solution near the boundaries remains small when compared
with the interior solution but can cause errors when the boundary solution
grows large. Take the finite differenced wave equation as an example. In
the difference solution using extrapolated boundary conditions a wave packet
that encounters the boundary of the grid will simply bounce off the boundary,
whereas in reality it should propagate off the computational grid. Difference
solutions to the Schrodinger equation have a similar problem and thus there is
a need to implement absorbing boundary conditions like those used by Israeli

and Orszag for the wave equation [23].

Keeping Brandt’s golden rule [4] in mind can help researchers can opti-
mize their numerical solutions of physical problems. For most finite difference
solutions to multi-dimensional time dependent PDEs, this means using of multi
level adaptive methods which, if used properly, can increase the resolution of the

difference grid only where needed. One of these methods is the adaptive mesh



refinement (AMR) technique of Berger and Oliger [3] which can be used to
solve initial boundary value problems. There are numerous examples of AMR
solutions of one and two spatial dimension time dependent problems [9, 44, 18]
while not much has been done for three dimensional problems[37] especially in
numerical relativity. The problem with AMR is how to implement the data
structures needed to keep track of all the grids and how to group designated
points on a grid scheduled for regridding. This is still a very active area of
research and thus many computational scientists use unigrid techniques and
leave AMR for the computer scientists. But to obtain numerical solutions to
many multidimensional time dependent problems such as (1.1) and (1.2) in a

reasonable amount of real time (on the order of days), AMR is a must.

The most important motivation for this dissertation is that the knowl-
edge gained here should help advance the Computational Grand Challenge
effort of coalescing black hole binaries. Currently, this is the major effort of
numerical relativity and will involve “fundamental new approaches to compu-
tation, architecture and algorithm.” [37] In the course of this effort, a modular
toolkit 1s being developed by physicists and computer scientists that can be used
to generate time dependent finite difference codes with the data structures for
AMR already in place. The belief is that a researcher with a working unigrid
code that can benefit from AMR would only need to define his difference scheme
and have a general knowledge of the Berger and Oliger algorithm [3] to produce
a three dimensional AMR code that runs in parallel. The solution of (1.1) and
(1.2) provides a nontrivial problem to use to develop these tools. Another of
the computational aspects of this Computational Grand Challenge effort will

be the implementation of boundary conditions for gravitational waves moving



off towards infinity. Thus, the development of boundary conditions for (1.1)

and (1.2) could also give some insight into this facet of the Grand Challenge.

1.4 The Contents of this Dissertation

The next chapter goes through a somewhat detailed description of how equa-
tions (1.1) and (1.2) are derived from the general relativistic action for a
complex scalar field. The Chapter also discusses an analogue between the
Schrodinger equation and the continuity and Euler’s equations for a compress-
ible fluid in a gravitational field. Then in chapter 3, the difference equations for
equations (1.1) and (1.2) are derived and a discussion of how to test the validity
of the difference solution is given. Chapter 4 gives a description of a new type
of boundary layer that can be applied near the boundaries of the computational
domain to prevent reflections off the boundary. Chapter 5 presents the results
of giving boson stars linear and angular momentum. Also, an attempt to orbit
a boson star is made. Finally, the last chapter concludes with some remarks

summing up this dissertation and gives a few directions for further research.



Chapter 2

Derivation of the Physical Problem

As there are many instances in research papers where the authors make use of a
derivation which they say is contained within a specified work but in actuality
is not, in this chapter I present a somewhat pedagogical guide of how one
goes from the general relativistic action for a massive complex scalar field to
the Einstein and Klein-Gordon equations describing the behavior of the field.
Using these equations, I then discusss how one obtains the Schrodinger equation
as well as Poisson’s equation for the Newtonian potential. In section 2.2.3, I
show that there is a conserved current which in the Newtonian limit leads to
mass conservation, an important concept for this dissertation and our universe.
In the final section, I derive an analogy to the hydrodynamic equations for a
compressible fluid in a gravitational field from Schrodinger’s equation. This
form of Schrodinger’s equation will be of use in understanding some of the

results in Chapter 5.
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2.1 Derivation of the Field Equations

The general relativistic action of a massive scalar field ® ! is: [53]

1 = /d4:z;\/—g£
Rc?
_ 4. [
B /d A [477‘G
Rt 1 mc\ ?
_ /d4x\/_—g [MG = (g‘“’CI);MCI): n (7) q)@*)] (2.1)

where the integral is over all spacetime which is flat at infinity, ¢g is the deter-

. EQ]

minant of the metric, R is the Ricci scalar, m is the mass of the field particle,
I use units where G # ¢ # h # 1, and (mc/h)*®P* is the energy density of the
field. As one may have noticed, the ® here is not the same ¢ in equations (1.1)
and (1.2). In section 2.2.2, under an assumed limit, ® is defined to be the field

¢ times a time varying phase factor.

2.1.1 Einstein’s Equations

In order to find Einstein’s equations, one takes the variation of the action (2.1)

with respect to the metric g,,:

ol O\/— 4 PSR, 8g°° R, 1)
o s e )2 -
Guv

0 167G 0 G 0
(2.2)
To find the first term in brackets, one uses:
dyg 05090 .
= gg*P =L = gt (2.3)
Gy e

so that:
b\/—g _ O\/—9 69up _ -1 Jg _ \/—ggw (2.4)
6w 9905 09wy 20/—9 0guy 2

lwithout the explicit self interacting A|®|* term

11



In terms of variations of Christoffel symbols, the variation of the Ricci tensor
is:
§R,, — [(5%)7& = (ors.) s (T, - Fjarfw)] (2.5)
from this it can be shown somewhat tediously:
1
N

Since | wish to examine the scalar field in a spacetime that is flat at infinity,

96 R = —— V=g (9675, — o1, )] (2.6)

the integral:

/d%’«/_g“ §R,, = /d4 (9612, — gmor2,)| =0 (27)

vanishes. To find the third term in brackets in (2.2) one uses the relation:

59&5 1 v B ﬁw 5g%, 1 w8 W
(e} w aw — o v av 2‘8
b0 2 (979" + g°“4™) b0, 2 (g° g™ + g*"g™) (2.8)

The final variation, the variation of Lg with respect to the metric, is:

0Lo
04

_ i (99" ® .07, + g"g" 0,07, ) (2.9)

Plugging in (2.4), (2.7), (2.8) and (2.9), the variation of the action with respect

to the metric function g,, becomes:

/ e “”ﬁ c'g"g" Rou
59/“/ 167G

Since this must be true for any scalar field and flat spacetime at infinity, the

term in brackets must be identically zero:

g R 1 me)\ 2 AR
— — (g orar (—) oO” HO 4 BVHTH) = 0
327G 4 (9 a7 ) Ton 1l * )=

(2.11)
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which leads to the Einstein field equations:

1 8r G
RY — —g" R = ——T" 2.12
59 i (2.12)
where the stress energy tensor (T*) is:
1 2
THY — 5 OHP*Y L TP — g;w (q);aq)?«a + <%) (I)(I)*)] (213)

2.1.2 The Klein-Gordon Equation

One obtains the Klein-Gordon equations by variation of the action (2.1) with

respect to ®*:

55(;* - %/d% [(\/__ggﬁ“’q)m) — V=g <%)2 q)] (2:14)

where the first term in brackets was obtained by integration by parts. One can

WV

simplify the first term in brackets by using the relation:
1 (\/__ggwq);#) = 9" P (2.15)
Ve ’
Thus (2.14) becomes:
2
/d4:z:«/—g [g‘“’q)w, - (%) q)] —0 (2.16)

and again because this must be true for all ® and g,,, the term in brackets

must be zero which is the Klein-Gordon equations for a massive scalar field:

2
9D, — (%) O =0 (2.17)

2.2 Weak Field Limits
2.2.1 Newtonian Potential

In the Newtonian limit of general relativity, it can be shown that: [39, 58, 52]

VIV - 4r(F

ct

700 (2.18)
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where V is the Newtonian potential for a mass density given by 7%/c?. In this

limit, the components of the metric may be taken to be:
goo=—(142V); g =(1—-2V),k=1,20r3; gop=0for a# 3. (2.19)

In the rest of the subsection, I use units G = ¢ = h = 1 down to where I obtain

the desired results. In these units, the Newtonian limit assumes:

TOO TOn T'rm
V~0(), ——~0(1), ——~0 —
(6 )7 m2®®* ( )7 m2¢¢* (6)7 m2®®*

~ (%) (2.20)
where ¢ < 1, and n = 1,2, or 3. Thus the 7% component of the scalar field
energy density divided by m?®®* is:

(1—4V?)
m2Pp o=

0% +

2\ m20o*

T 1 ((1-2V)
m2eo* 2

Z D, 0% + (1 - 2V)) (2.21)

k=1

and the T component divided by m?®®* is:

Tnn 1{ (1-4Vv?) (1+42V)?
= (- e ot ) NT L0k 4 (1 42V
m2od* 2( m2ope 0ot T g kzl #®+(1+2V)
(1+2V)?
_ T o 9.92
—55 2P (2.22)

Summing the 11, 22 and 33 components of T divided by m?®®* is:

3 Tk]C 3(1 —4V?
Zk_l ( )(I) Oq)*

(1+2v)r 2
m2od* 2 m2pdx OO m2d =

0,070+ (142V) > 0(€)
k=1
(2.23)

Thus the term containing the spatial derivatives divided by (1 4+ 2V') is

(1+2V)

. (1=2v)
Z(I)q)* Eq)kq) o

= m2PP*

® 0%+ 1+ 0(c?) (2.24)

Plugging this back into 7%/ (m?®®*) and canceling terms:

TOO

—o0 (1-2V)+0(&) (2.25)
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Taking only the O(1) term one finds:
T ~ m?*®o* (2.26)
Then plugging 7% into equation (2.18), one obtains:
VV ~ drm*0P* (2.27)
Going back to units where GG # ¢ # h # 1, this becomes:

2 m 2 *
V2V o drl (h—> od (2.28)
C

which is the equation for the Newtonian potential (¢*V') with a mass density

given by:
m

p=( - )2 oo*. (2.29)
2.2.2 The Schrodinger Equation

From the Klein-Gordon equation and the equations of the Newtonian metric

in units where G = ¢ = h = 1, one gets:
—(1=2V)® 4+ (1 +2V) V0 — m*® = 0. (2.30)

Defining @ to be:
(x,1) = ¢(x,t)e™™, (2.31)

then the second time derivative of ® becomes:
®7tt = (—'l.m¢7t + ¢,tt) e_imt —m (—lm¢ + ¢,t) e_imt (232)

Plugging this into (2.30) and dividing by m?¢ and dropping the exponential:

_2V—|—2i(1—2V):;—’;—|—(1—2V)$;

V24

m2¢

+ (1 +2V)

=0.  (2.33)
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Assuming that:

O o Vig
V ~ O(e), md ~ O(e), g ~ O(e), -y ~ Ofe), (2.34)
then dropping the order €? terms in equation (2.33)
ey ¢ | V0
-2 20—~ : = 0. 2.
V+ Zm¢+m2qb+m2¢ 0 (2.35)
Rearranging terms this becomes:
. 1,
10y = ——Vp+mVeo (2.36)
2m
Converting back to units G # ¢ # h # 1, one obtains:
h?
ihg s = ——N2¢+mc*Ve (2.37)
2m
which is the Schrodinger equation.
2.2.3 Mass Conservation
There exists a conserved current for the Klein-Gordon equation:
i v * *
= =g (0,,0° - 907,) (2.38)

which one can see is conserved by taking the covariant divergence of J*:

?

I = g, (9,07 - 00;)
i v * *
_ﬁg# (q)ﬂ/q);u - q)h“q);u)
l uy * *
~579 (9,0 — 097,,) =0 (2.39)
The first term vanishes since ¢g", = 0, the second term vanishes assuming

the symmetry of the spacetime metric, and the third term vanishes if the field

16



equation (2.17) is satisfied. equation (2.17). Associated with this conserved

current is also a conserved scalar particle number on a ¢ =constant surface:
1 3 0
N, = —/d e/—g] (2.40)
¢

This is conserved if the integral is over all space. If one plugs in the ® given
by equation (2.31) and uses the Newtonian metric (2.19), the J° component of
the current is:

J° = %(M)* (2.41)

where terms of O(V?) have been dropped. Thus, the conserved particle number

in the Newtonian limit is:
N, = %/d%(é(ﬁ* (2.42)

This should be correct since the Newtonian density p is (m/h)*¢é*. Also
note that any solution of equations (1.1) and (1.2) should conserve N,. So
this provides one of the ways to check a finite difference solution of the time

dependent Schrodinger equation coupled with Newtonian gravity.

2.3 A Hydrodynamic Model for Schrodinger’s Equa-
tion

In quantum mechanics, Schrodinger’s equation describes the dynamics of a set

of particles when the Heisenberg uncertainty principle becomes important in

relating a possible range of positions and momenta for the set of particles.

In this quantum regime, the certainty of position and momentum of a point

particle is longer prevails. Instead these parameters can only be described by

a position density function, ¢(x,1)¢*(x,t) which gives the probable location of

17



the particle in position space or described by the probable momentum density,

é(p,t)¢*(p,t), in momentum space. [38]

In fluid mechanics, the continuity and Euler equations describe the be-
havior of a perfect fluid. Along with an equation of state, these equations
approximate the behavior of a large number of molecules when one wants to
predict the behavior of these molecules on a spatial scale much larger than
the average distance between molecules.[33] Thus when the probability density
of the Schrodinger is viewed in an analogous fashion to that of the density
of a fluid, one should expect that solutions of the Schrodinger’s equation ex-
hibit fluid like behavior. This section presents a derivation of an analogous
set of equations to the continuity and Euler’s equations for a compressible

self-gravitating fluid from the Schrodinger equation, (2.37). [55, 35, 13, 14, 32]

Given the definition of density,

m
p(x,1) = ()" 6" (2.43)
the time derivative of density is:

dp _0(6"9) _ (ﬂ)z <¢a¢* 4 ¢*a¢> (2.44)

ot ot A ot EN

which after replacing the time derivatives with the right hand side of the
Schrodinger equation, becomes:

Op _mi (B, mg
o (%W“’”‘CW B

_—th%* + mc2v¢>*) . (2.45)

2m

Upon simplification, one obtains:

9p _ m o o .
a1 = g2V (#TVe— V). (2.46)
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Now define a current density as:

m

2ih?

J (¢"Ve — 6VeT), (2.47)

and write the scalar field of the Schrodinger equation as:

. S(X,t)

d(x,t) = A(x,t)e' & (2.48)
where A and S are well-behaved real valued functions. So one sees that:

0 . m
S = V.= -V (7Y = -V (%VS(x,t)) (2.49)

which is just a continuity equation describing the conservation of matter over
time as proved in the previous section. To obtain a form of Euler’s equation
from the Schrodinger equation, (2.37), input the form of the field in equation

(2.48) into the Schrodinger equation:

. a¢ . ;S aA Zias hQ ;S Z ;S 2 ;S
zﬁa = the ha—Ae ha =5 (V- <e "rVA+ %Ae hVS))—I—mc V Ae'r .

(2.50)
The full blown form of the right hand side is:

19

2 '. . . '. . . .
S (%e"%vs VA4 enV2A+ %A625V25 - %Ael% (VS)Z) +mc*V Ae'r.

2m

(2.51)
Bringing the time derivative of A to the right hand side and dropping the

exponential, one obtains:

. 2 .
— Aa—S = —iha—A — @VS -VA-— h—VQA — i/1'\725 + i (VS)2 +mc*V A.
ot at m 2m 2m 2m
(2.52)

To transform this equation into the form of Euler’s equation, use the relation:

2 2
Op _ 047 o494 _ ¢ (i/ﬁvs) __Moavs— A s
ot ot ot m m m



which can be rewritten as:

0A A _,
27+ VS = —VA- VS, (2.54)

Plugging this relation back into equation (2.52) and bringing all the terms

containing S to the left hand side, one obtains:

195 (VS) ) h? VZA
—— =—cV+— . 2.55
m Ot 2m? vt 2m? A ( )
which upon taking a gradient becomes:
1 9(VS) 1 ) R VA
By defining a velocity vector, v, to be:
j VS
v=1_22 (2.57)
p m
one obtains a form of Euler’s equation from the Schrodinger equation:
av R’ VQp%
i . = _ - 2.
3t+(v Vv V(V 502 p% ) (2.58)

where the quantity —(ﬁ2/2m2)v2p%/p% can be viewed as an internal pressure
potential. So one sees that the dynamics of a massive scalar field coupled with
Newtonian gravity can be studied from a hydrodynamic viewpoint by solving
equations (2.49) and (2.58). However, one of the goals of this dissertation is
to give a very efficient way of solving (1.1) and (1.2) and then interpret the

results from a hydrodynamic perspective.

One thing one might say about this analogy is that the “Schrédinger

fluid” appears irrotational because the velocity field is the gradient of a real
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valued function. This is only partially true for the complex scalar field as can

be seen when the scalar field is given an initial angular boost:

3(x,0) = A(x, 0)e " eiNe (2.59)

where ¢ is the usual azimuthal angle in spherical-polar coordinates. Thus,
this defines an initial state with a z-component of angular momentum. The

gradient of this quantity is:
iN Ae'r ¢iNe

rsin 6

Vo =eneNVA + %Aei%e”wvs + (2.60)

where r and 6 are the usual spherical-polar coordinates. This allows one to

write VS as:

V¢ VA N
h— +1h —h . 2.61
VS = 0] e A rsin (2.61)

Thus, the line integral of the velocity field around any closed contour C' is:

fcv(x,())-ds:fcvs(ixo :_}l{ ( (Ing) +:V(In A) — m,% )-ds

rsin 6

(2.62)
Because the first two terms in the right most integral are gradients of real
valued functions, their line integral about the contour C' will be zero which one

can see from Stoke’s theorem[25]. Thus the contour integral is:

fcv(x,()) ds = 2Nk (2.63)

m

The quantity N must be an integer and ¢ = 0 at the origin in order that ¢ be
single valued. So when n = 0, the velocity field is irrotational. When n # 0,
the velocity field can have rotations which are quantized. These phenomena are
called quantized whirlpools and were first discussed by Dirac in his classic pa-
per on magnetic monopoles.[14] and have subsequently received more detailed
study. [56, 46, 62, 22] More about these whirlpools will be discussed in chapter
5.
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Chapter 3

Finite Difference Solutions

Before delving into how to numerically solve (1.1) and (1.2), I wish to make
a change of variables for simplification purposes by performing the following
changes of the actual physical independent and dependent variables to variables

used in computational solutions:

mc mCQ

7Xphy87 Ttphys - (Xcomp7 tcomp) (31)
VirG
T¢phys - ¢comp (32)

where m is the mass of the scalar particle. Thus, in terms of the computational

variables, the physical variables have values:

Xphys = 3.518 x 10—38% Xcomp (3.3)
tongs = 1173 x 107882 (3.4)
m
1 1
g? cma2

bonys = 9.816 x 1023 Beomy (3.5)

S

So one sees that the computational variables are truly unitless. Dropping the
comp subscript, the time dependent Schrodinger equation coupled with New-

tonian gravity becomes:

o6 [V
VIV = 4o" (3.7)
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These equations have the boundary conditions:

Tli_glo o = 0 (3.8)
C

limV = —— (3.9)

r—00 r

where r = |x| and (' is some positive constant. Since the density is proportional
to ¢¢*, in these units the density will be defined as equal to ¢¢*. These
variables will be used throughout the rest of this dissertation except in the
last chapter where I will perform simulations of phenomena that might have
actually occurred in our universe. Before delving into numerical solutions of
(3.6) and (3.7), one might wonder how interesting initial data can be generated

for these equations and so that is where this chapter begins.

3.1 Generation of Initial Data

Since one of the main motivations of this dissertation is to computationally
study boson stars, I need a way to generate density profiles, which are com-
pact and stationary when evolved by equation (3.6) and subject to the self
gravitating condition of equation (3.7). This can be done by imposing spher-
ical symmetry and assuming time independence for equations (3.6) and (3.7).
Doing this, one obtains the spherically symmetric eigenvalue problem:

10,04

19 (L,0v
7“_25 (T E) = ¢¢". (3-11)

To obtain a static compact density distribution when evolved by equations (3.6)

and (3.7), solve equations (3.10) and (3.11) for the eigenvalue F of the lowest
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eigenstate. These equations can be put into the form of four coupled first order

ODEs: !
g _ 1,
or  r?
a !
a—qi = 20 (E+V)¢
oV 1,
o = oY
oV’
5 = rip = r?po* (3.12)

where ¢/ and V' are variables and, given ¢(r = 0), solved to high accuracy
using a Runge-Kutta method. [63] To find £, make an initial guess and repeat
the solution of (3.12) refining the guess of F to machine accuracy subject to
the boundary conditions (3.8) and (3.9). As there are numerous free software
packages to solve ODEs using the Runge-Kutta method, [24] there is no need to
discuss how these equations are solved. A typical solution of (3.12) for p and V
is shown in figures (3.1) and (3.2). As one can see, the density drops off towards
zero from a central peak while the potential is what you would expect for the
density distribution (¢¢*) shown in the previous figure. Thus by interpolating
the numerical solution of the above spherically symmetric eigenvalue problem
into three dimensions, one can generate initial data for the numerical solution
of (3.6) and (3.7) whose density distribution should remain nearly static. When
sets of spherically symmetric static data found from solving equations (3.10)
and (3.11) are placed on a three dimensional grid as initial data and evolved,

one can observe the interactions of boson stars in the Newtonian regime. Since

Lordinary differential equations
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Figure 3.1: A typical density p from solution of the eigenvalue problem.
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Figure 3.2: A typical potential V' from solution of the eigenvalue problem.
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the Schrodinger wave function has the property:
< @™ (x,t) —1VP(x,t) >=p (3.13)

where p is the average momentum of the field, one can add to the average
momentum of the initial data simply by convolving ¢(x,t) with exp(ip - x) as

one sees that:
—iV (¢(x,1)exp®*) = exp™* (=iV + p) ¢ (x, 1) (3.14)

Thus the initial data for each boson star can be given arbitrary linear momen-
tum. As shown in the last section of chapter 2, one can add angular momentum
in quantized increments by convolving the scalar field, ¢(x,t), with exp(: Ny)
where N =0,+1,4+2,....

3.2 Finite Difference Equations

As discussed in the first chapter, there is a need to solve equations (3.6) and
(3.7) by the most efficient means possible. For Poisson’s equation this suggests
the use of multigrid [4, 59] which for N grid points generally takes O(N) float-
ing point operations to solve. I use a multigrid routine written by Matthew
Choptuik and enhanced by Scott Klasky for Neumann boundary conditions to
solve a centered difference form [40] of equation (3.7).2 Although multigrid
has optimal efficiency, in these days of vector supercomputers, it seems that
to many people® the computational speed of an algorithm * is the algorithms

most important aspect. In defense of this, Choptuik’s multigrid routine runs

2An elaborate pseudocode for multigrid can be found in [28].
3Especially those deciding on allocation times for supercomputer usage.
4Usually measured in floating point operations per second
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at about 200 Megaflops out of a possible 1 Gigaflop on the Cray C90 for a
1292 grid which is a respectable speed especially for multigrid. Another way

to enhance the computational time of multigrid is by using parallel computers.

Scott Klasky and I developed an algorithm for this which is discussed in [28].

The method used for solving equation (3.6) had two motivations. One
concerns instability [31, 30] which for centered difference schemes can occur if
the time step is too large in comparison to the spatial mesh width. The other
motivation is to use a method with optimal efficiency. Choptuik and I chose
a method that has unconditional stability and takes O(N) steps to solve. To
begin one notes from Taylor series expansion that formally equation (3.6) can

be written:

¢ (x,1+ Ah) = Mg (x,1) (3.15)

where h is the spatial mesh width of the finite difference mesh, A is a constant

proportionality factor relating the spatial mesh size to temporal mesh size, and

D =V?/2 — V. Multiplying by exp(—iAhtD/2) this becomes:
e (x, 1+ Ah) = e3P (x, 1) (3.16)

If this equation were expanded and put into second order centered difference
form now it would be a Crank-Nicholson type equation [40] and would require
a seven banded diagonal solver. For n points per edge of the difference grid
and a total of n* grid points, the bandwidth of the solver would be O(n?)
and thus could be quite large in comparison to the matrix formed from the
three dimensional plus time difference equations. Thus the method would be

an inefficient way to solve (3.6). One sees that equation (3.16) can be written
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28

in the form:

iR 52 iAh 82 ian 82 iAh 82 idh 82 an 82

e ¢ @6_T6y e 4 @6¥V¢ (X7t—|— )\h) — e 4 az2e ? 6y26 4 922 G_MThV¢(X7t)—|—O ()\Bh?))

(3.17)
where the error term arises because the potentaial V' does not commoute with

the partial derivatives. This equation can be broken up into four equations:

RIS (x) = et ez (x,t) (3.18)
_ixh &% iAh &2

e T2l (x) = e® a?S(x) (3.19)
eI (x) = e T (x) (3.20)

iAh

eV (x,t+\h) = e 3

YU (x). (3.21)

Now, in second order centered difference form the second partial derivative of

z can be written:

0? 1 1 1

where 62 is the second order central density operator defined by:

8af(x) = f(z +h) = 2f(z) + [(z = h) (3.23)
Replacing the parital derivatives with the first term in the expansion equation
(3.22), expanding the exponentials of equations (3.18)-(3.21) to lowest signif-
icant order in h, and replacing the continuous notation of the variables with
discretized notation, one obtains:

i
(1 - H(Sf) Sijk = O (3.24)

)
1+ 252) S (3.25)
) Tk (3.26)



where:

ik = 0o +1h,y, + jh, 2o + kh,nAh) = ¢(x,1). (3.28)

VZ?:% is used because, we wanted to have the difference equations in Crank-
Nicolson form[40] so that they would be unconditionally stable [31, 30]. These
are the difference evolution equations of (3.6) in ADI form where given ¢7;
one can use a tridiagonal solver to find the update function, Z‘};l Since the
computational domain can not cover an infinite physical domain, it is assumed

that ¢, is nearly zero around the outer boundaries and thus one can use

extrapolation boundary conditions with the above difference equations:

¢’g]‘k = 2¢7fjk - ¢’§jk (3-29)
¢7}+1jk = 245?]% - ¢’?-1jk (3-30)

n L .
with similar equations for the left and right 7 and k& boundaries. VZ»J.:2 is found

by the O(A?h?) extrapolation:
G2 ==V — =V (3.31)

as one can find the potential, V', at the n and n — 1 time steps from solving

the multigrid solution to (3.7) using ¢7;; and qbfﬁcl respectively.

On vector supercomputers, tridiagonal solvers do not vectorize well be-
cause when computing the solution u to a given tridiagonal matrix problem
Au = b, the computation of u; depends on u;_; and thus the flops are relatively
small compared to other methods for solving linear equations. The vectoriza-
tion of these routines can be improved by writing a tri-diagonal solver that
solves an array of lines rather than one line at a time which is referred to as

inilining.[11] The inlined tridiagonal solver runs almost five times faster on the
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Cray C90 than the specially written tridiagonal solver written for Cray vec-
tor supercomputers and improved the speed for the solution of (3.24)-(3.27)
by a factor of 3 for 129% grids. A new method for parallelizing the ADI
method using a one dimensional multigrid technique will be discussed in a cur-
rently unpublished paper[21] and other methods can be found in the following
references[57, 16].

A particular solution of equations (3.24)-(3.27) coupled with the multi-
grid solution of V7, is shown in one dimensional movie form in figures 3.3-3.6.
Initial data was generated for a single boson star with a central density of 1
centered in a 129° spatial mesh with spatial width of 32.0 in the z, y and

> BEach spatial frame displays 65 points of spherically symmetric

z directions.
data with a domain from r = 0.0 to » = 8.0 with the data being interpolated
from the three dimensional calculation. Each movie starts in the upper left
corner at £ = 0.0 and proceeds from left to right and top to bottom in time
increments of 0.5 to a final time of 19.5 in the lower right corner. The range of
figures 3.3 and 3.4 which show the evolution of the real and imaginary parts of
¢ goes from -1.0 to 1.0. These movies show that for the given initial data the

scalar field simply oscillates at a constant frequency with the imaginary part

of ¢ remaining 90 degrees behind in phase from the real part of ¢.

Figure 3.5 for the density ¢¢* has a range from 0.0 to 1.1. It shows that
the density remains relatively constant with slight perturbations around the
initial distribution which can be seen from this movie by looking closely at the

changes at the central point (r = 0) of each time frame. This is to be expected

5Remember that the spatial, temporal, ¢ and V computational units are all dimensionless
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Figure 3.3: Time evolution of the real part of the scalar field ¢. Limits: com-
putational domain (z,y,z: -8 to 8); frame domain (r: 0 to 8); frame range

(¢rear: -1 to 1).
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Figure 3.4: Time evolution of the imaginary part of the scalar field ¢. Limits:
computational domain (z,y,z: -8 to 8); frame domain (r: 0 to 8); frame range

(¢)imagina7’y: -1 to 1)
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Figure 3.5: Time evolution of the density of the scalar field ¢¢*. Limits:
computational domain (z,y,z: -8 to 8); frame domain (r: 0 to 8); frame range

(¢g*: 0 to 1.1).
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Figure 3.6: Time evolution of the Newtonian potential V. Limits: computa-
tional domain (z,y,z: -8 to 8); frame domain (r: 0 to 8); frame range (V: -1.5

to 0).
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# mesh initial mass final mass % change time steps
points t=20 t =280 in mass
333 25.9150- - - 25.9147- - - 1.3 x107? 160
65° 25.915036 - - - 25.915001--- 1.2 x 1074 320
1293 25.9150179---  25.9150168--- 4.3 x 107° 640

2573 25.91502873 -+ 2591502864 --- 3.4 x 1077 1280

Table 3.1: The results of the evolution of a single boson star with an initial
central density of 1.0 centered in a spatial mesh of width 32.0 on a side for a
varying number of mesh points.

since the initial data is that of the spherically symmetric eigenvalue problem
and thus a proper finite difference time evolution of this solution should give
a constant density. The slight oscillation of the density results mainly because
of truncation error of the finite difference solution. This situation is somewhat
akin to that of a harmonic oscillator solution with a potential slightly perturbed

from the bottom of the potential well.

The movie for the solution of the Newtonian potential has a range from
-1.5 to 0.0 and shows that V remains relatively constant due to the nearly
constant density. Each time frame also shows that the potential is assuming
the functional form of —C/r as r goes to infinity which is the form of the
Newtonian potential due to a point mass. This is also expected since the
density distribution becomes very small (107®) relative to the central density

at r = 8.0.

How well a computational solution obeys the conservation laws for the
modeled PDEs is considered by many computational scientists to be a good way
to check the validity of the computational solution. As shown in section 2.2.3,
the time-dependent Schrodinger equation coupled with a Newtonian potential

conserves mass. Thus by spatially integrating the density (¢7,¢77) at the
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initial time (n = 0) and the final time, one can test how well the difference
evolution equations (3.24)-(3.27) conserve mass. The results of the evolution
of a single boson star with an initial central density of 1.0 centered in a spatial
mesh of width 32.0 on a side for a varying number mesh points are given in
table 3.1. The initial and final masses have been computed to machine accuracy
for real*8 FORTRAN variables on Cray computers® and are given at the initial
time (¢ = 0) and the final time (¢ = 80). The number of computational steps
in each evolution are shown to indicate that the width of the time steps are
kept at a constant factor to each spatial mesh width.” As the table shows,
the largest percentage change in mass is on the order of 107 for the 33 mesh
and drops by at least a factor of 9 for each doubling of the mesh point spacing.
Superficially, these results appear to indicate that the difference solution models
the differential equations quite well even for a 33 spatial mesh. As the next
section will demonstrate, these results are deceptive and a better way to check

the validity of a finite difference solution is through convergence checking.

3.3 Convergence of the Finite Difference Solution

Most of the physicists with whom I have talked distrust numerical solutions
of partial differential equations believing that the error of approximation can
infect the numerical solution so that results of the simulation do not represent
the analytic solution. This myth can be dispelled for finite difference solutions
of PDEs by convergence checking [45, 8] in which one shows that in the limit

that the grid spacing h goes to zero the finite difference solution should be the

Sreal*8 on Crays have a machine precision of about 14 significant digits.
“i.e. A = Ay/h is constant for all computations.
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same as the analytic solution. Whereas many numerical scientists check their
computational solutions by comparing them with an exact solution or by show-
ing that the solution adheres to a conservation law such as mass conservation,
a more rigorous test that the general difference solution of a PDE converges to
the solution of the PDE?® is convergence checking. For pedagogical reasons, I
will show that the spherically symmetric difference equations of (3.6) and (3.7)
converge to the analytic solution. Then I will show that the three dimensional
difference solution (3.24)-(3.27) is similar to that of the spherically symmetric

solution.

In order to easily satisfy the regularity condition at r = 0, the spherically
symmetric center difference equations for the Schrodinger equation coupled

with Newtonian gravity are generated from the differential equations:

9 3 0 (r28—¢) — Ve (3.32)

ot~ 20r3\" or
0 , 0V .

The centered difference forms for these equations are:

ALy = L [an AL (67) —ar AT ()] — i VP el (334)

(af A} —a” A7) V" = 77" (3.35)
where af,Ai and A% are defined in table 3.2. To find the behavior of the
error, one inputs into (3.34) and (3.35) the differential form for the difference

operators and the Richardson expansions[45]:

¢;L = ¢ + h6¢1 + h26¢2 + h36¢3 + O(h4) (336)

‘/jn = V —|— heVl —|— h26V2 —|— h36V3 —|— O(h4) (337)

8in the limit that the discrete domain approaches the continuum, h — 0.
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Differencing Operators:

n+1 n 2 3
) Q ( ) d ”+5 4
A4, Vi (675 LTI O

9 g d  ho*  h P
Alg; = i%: (a_xi§@+ 6 923 g; + O(h?)

Averaging and Extrapolating Operators:

n+1 2 2
+ 97 (AR)T 0%\ gl
t n — _ 2 4
pyd; = # = (1 t g a9 TOMY)
3¢g" — g"F! 3(A ) 82
t n = J J — 1 h4
Variable Definitions:
3r2 2 3
j+l 1 1 h h h 4
T 2 =4 — 4+ — — O(h
o r?+;_ — r?’_;_ hr; + 672 * 12r? 721 +O()
g;L = (rjan)‘h)

o1
r; = <j—5)h

Table 3.2: Definitions of operators and variables used in the text.



where ¢ and V are the analytic solutions to (3.32) and (3.33) and the ey, ey, . . .

are error terms which in the limit ~ — 0 are independent of h. Since terms

of a given order of h are independent of &, one can separate the differential

expansion of the difference equations into equations at each order of h:

do 11 0 ([ ,0¢ . B
ot 2r2or (T @r) +iVe=0
Lo (Y

rZ or g or

)—¢w=o

which are the O(1) equations;

1
deg, 110 (ﬁ%) +iVey, —ievid =0

ol 2 r2 Or or
1 8 286V1 % *
ﬁ@@’m)‘¢%‘“%—o

which are the O(h) equations;

66@ Z 1 8 266@ . .
o1 —ﬁﬁao“m>+m%—

N9 (10 0¢
RAGE ISR i +
16 9t2 \ r2 or or

P 9% i Pé i 0%

i 9

24 9r* " 6rord ' 12r2 0r:  12r3 Or

iIN D% 3N OV

V+ ¢ — ey, —1ev €y,

ENCE 8 Ot2
1 a ae 2 * * *

1oV 10°V 1 0*V

which are the O(h?) equations;

0e¢3 l 1 (‘3 286¢3 . .
ot 2r20r (r or ) tiVey =

I a4€¢1 i836¢1 I 826¢1

LoV 1V 1V 1oy
12 Ort 3r Ors 672 Or? 673 Or

¢

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

deg,

24 Ort 6r Or3 12r2 Or2

12r3 Or
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KaQG@ ¢ %82@1
8 oz P\TT T3 o

. 32 0%V , )\_262_¢ n

t€p, | €V, 3 atQ tey; 3 atQ €4,

N D%y, AT O (10 [ ,0ey

R AT TE (_a_ ( o (3.44)
r2 Or (TZ ar ) T €4y T €466 T ¢6¢3 + ¢eg, —

1 846V1 1 836\/1 1 826V1 4 1 aev1
12 ort 3r Ord 6r2 Or? 6r3 Or

(3.45)

which are the O(h?) equations. As one sees, the O(1) equations are just the
original differential equations .? Assuming that there is no error in the initial
data for the difference equations,'® the O(h) and O(h?) equations which have
no sources from lower order nonzero terms show that the errors ey, ey, €43
and eys will remain identically zero. The same sort of pattern is inherent
in all the odd order equations and thus all the odd order errors will remain
identically zero. This is what Richardson posited in 1910 for the solution of
centered difference approximations to PDEs [45], and thus solutions to centered

difference equations will have the form:
u? =u+ h2€u2 + h4eu4 + O(hG). (3.46)

The even order h equations show that the equations for the even order errors
are the same as the original differential equations except that they have driving
terms dependent on ¢, V' and lower order errors. Thus the errors should behave
in a similar manner as that of ¢ and V. One can compute an estimate of this

error by comparing center difference finite difference solutions using different

9.¢. the difference system is consistent.
Wie es, (rt=0)=ey, (r,t=0)=0form=1,2,3,...
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mesh widths, usually h and 2h:

€py = fan —On _ 5hiey, + O(h") (3.47)
3h?

This truncation error estimate is the basis of Berger and Oliger’s AMR tech-

nique [3, 7]. Another useful quantity one can compute from the expansions of

the finite difference solutions is the test for second order convergence of the

finite difference solution at a given time:

) _ |uh3 B uh2| (h?% B h%)

ny —ny| (=R - O (3:48)

Tco’rwg (uh1 s Uhyy Upgs h17 h27 h37 t

where the terms in | | are the spatial norms of the difference of two numerical
solutions at a given time using different size hs.'’ Since this is only true in the
limit o — 0, the centered difference equations (3.34) and (3.35) should only
approximate this equation, but the approximation improves as one decreases
the size of h. Thus given three finite difference solutions with varying A at par-
ticular times one can check the convergence of one’s finite difference equations

by showing that T.,,,, approaches zero as hy, hy, and hsz — 0.

Figures 3.7-3.11 give a comparison of this convergence factor for the
spherically symmetric, (3.34) and (3.35), and the general three dimensional
difference solutions, equations (3.24)-(3.27), to the time dependent Schrodinger
equation coupled with Newtonian gravity. The spherically symmetric and three
dimensional solutions start with the same initial data for a single boson star
with central density of 1.0 and T7,,,,, computed at 80 times from { = 1.0
to t = 80.0 for varying ratios of the spatial grid spacing h. A spherically

symmetric difference solution with 17 spatial mesh points covering from r = 0 to

Uhy =n1h, hg = noh and hs = nsh where ny, no and ns are natural numbers.
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r = 16 will have a comparable three dimensional solution with equivalent mesh
spacing but 33% spatial mesh points since the spherically symmetric initial data
is centered in the three dimensional grid. Thus since the spherically symmetric
solutions have a spatial mesh width of 16, the three dimensional solutions have

a mesh width of 32 in the x, y and z dimensions.

Figure 3.7 shows the spherically symmetric results of T,,,, for increas-
ingly finer values of hq,h; and hs at varying times. As the figure shows 1.,
appears to have an almost random distribution within the plot box. This in-
dicates that the errors of the spherically symmetric finite difference equations
are dominated by the higher order error terms than the O(h?) errors. In figure
3.8 the points for the coarser set of hs still oscillate but in a more consistent
pattern than in the previous figure. The T,,,,, with the finest set of ks does
settle around zero which indicates that the the difference scheme is converging
to the continuum solution. In figure 3.9, one can see that the T.,,,,s grow closer
to zero for finer sets of hs. The spurious points off of the zero line are due to
when the real part of ¢ is near a zero crossing in the oscillation. This causes
the numerator of the first term with | |s in (3.48) to be artificially too large
or the denominator to be too small and thus give an incorrect value for T.,.,.
This is also complicated by the different oscillation frequencies of the difference

solution for different values of h also caused by errors in the difference solution.

Looking at the three dimensional results in figure 3.10, the T,,,, with
the coarsest set of hs appears to be even worse than the comparable spherically
symmetric results in figure 3.7. This is expected since there is an order A* error
term introduced in the three dimensional ADI solution since the potential V

does not commute with the finite difference operators. The T%,,,, for the coars-
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est set of hs in figure 3.10 is for evolution runs with 332, 65% and 129> spatial
mesh points and shows that the conclusions from the mass conservation results
in table 3.1 that the solution of the difference equations for these mesh sizes are
close to the differential solution are misleading. The T.,,,,s for finer sets of &
do appear to be approaching zero, and figure 3.11 shows that this is definitely
true. One would like to show three dimensional results which are similar to
the spherically symmetric results shown in figure 3.9 but unfortunately in three
dimensions one quickly runs into memory problems so that a 2572 spatial grid
is the largest grid able to be implemented for this problem on the Cray C90 at

the Pittsburgh Supercomputing Center.

Similar results were found for the imaginary part of the scalar field as
well as the Newtonian potential. Thus the difference equations are shown to be
consistent with there differential equations for the given initial data and on the
given spatial mesh width for finest spatial meshes. This could not be demon-
strated for any of the three dimensional solutions if one doubles the mesh width
even the 257 solution since the single star could not be very well resolved for an
h = 0.25 and thus the higher order error terms would dominate the difference
solution. This problem can be solved by using adaptive meshing which will
allow one to resolve very compact objects on a large domain. Also one might
wonder what happens when two stars collide or the initial data for a single
star is given momentum and the subsequent evolution causes it to collide with
the computational boundary. In both cases a large amount of matter comes
in contact with the boundaries which invalidates the extrapolation boundary
conditions used in equations (3.24)-(3.27) and the boundary condition for the

potential equation, V. = —C'/r. In these cases, absorbing boundary condi-
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tions similar to those used by Israeli and Orszag [23] for the wave equation are
needed. Luckily, the implementation of these boundary conditions turn out to
be quite simple and robust. The implementation of these boundary conditions

are discussed in the next chapter.
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Figure 3.7: Convergence factors, T4, for the real part of the scalar field ¢
from the solution of the spherically symmetric difference equations.
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Chapter 4

Annihilation Boundary Layers

The boundary conditions (3.30) and (3.30) are effective only when the solution
of ¢ is smooth near the boundaries. When a distribution of matter comes
in contact with the computational boundary, the matter is reflected off the
boundary as shown in figure 4.14 This reflection causes gross computational
errors at subsequent times in the simulation. Thus there is a need to find
boundary conditions which minimize the amount of matter reflected at the

computational boundaries.

Baskakov and Popov [1] found a method of computing the boundary

condition at a finite point for the one spatial dimension Schrodinger equation:

0o 0% B
za—l—@—l—‘/(:n,t)qb—() (4.1)

in a region where the potential, V(z,t) is nearly zero. By use of a Green’s

function technique, they found that at a point = = +a:

0¢(+a,t) exp”i™t 9 gt

? al’ - :F ﬁ 8_1; o ¢(ia7€>

dg
t—¢

(4.2)

where they assume V(+a,t) = 0. This type of boundary condition has one
major drawback. Although there is a way to generalize this boundary condition

to three dimension [36], one cannot assume that the potential will be zero at the
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computational boundaries for the time-dependent Schrodinger problem coupled

with Newtonian gravity.

Another possible finite boundary condition for the Schrodinger equation
is to use the “absorbing boundary conditions” of Israeli and Orszag [23]. They
suggest equating the Schrodinger equation with the wave equation in operator

form:

dx?

9% P
at

—p—+v>¢zL% (4.3)

where the operator:

L= J (—z% +V - wo) + w, (4.4)

can be approximated by:

1 1 0
L~ —\/u, —1—+ V). 4.5
9 “+21/—wo(lat+ ) (4.5)
This approximation of I can be used in the boundary conditions:
0 +L]¢=0, at + (4.6)
— =0, at © = +a .
dx ’

to allow only the outgoing parts of ¢. One of the problems with these bound-
ary conditions is that the solution must consist only of waves with oscillation
frequency near w,. Another problem is that in multi-dimensions, only waves
with normal incidence are absorbed effectively. The annihilation boundary
conditions discussed in this chapter perform nearly as well as the transpar-
ent boundary conditions for the time dependent one dimensional Schr'i'nger
equation and better than the absorbing boundary condions. However, the an-
nihilation boundary conditions do not incur the problems that transparent and
absorbing boundary conditions incur when used with the multi dimensional

time dependent Schrodinger equation.
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4.1 One Dimensional Annihilation Boundary Layer

The discussion of annihilation boundary layers begins with the one dimensional

Schrodinger equation (4.1) with V = 0:

% = i% (4.7)
which given the Fourier analyzed initial datas
¢ (x,0) = i Agetr® (4.8)
k=—c
has the solution:
¢ (x,1) = i Ayexp [—ik*t + ika (4.9)
k=—c0
If one adds the term —vg to the one dimensional Schrédinger equation:
% = i% — v, for v > 0. (4.10)
Then given the initial data (4.8), this equation has the solution:
¢ (x,1) = i Aexp [(—ik? = v) t + ik (4.11)

k=—c0
So now the solution is damped exponentially in time. One might wonder what

the solution is for a nonconstant v:

0 for |z| < |zpa| — (w0 + A)
v(z)=49 0= H as |z|: |z — (w+ A) = |zpe| — (w — A) (4.12)
H for |z| > |xp4| — (0w — A)

where x4 1s the computational boundary and w, A and H are all positive
constants. The solution of (4.10) using (4.12) can be computed computationally

using the implicit difference equation:

ALgr = (IATAZ —v;) 6 (4.13)
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Reflection Coeflicient

Mtst (tfmv Ty, 'Trly)

R (Linits tfin, ity Ty, w, Ay H) =
Mcon (tinity xlly; xrly)

- Mcon (tfinv Tlly, ley)
- M

con (tfzna Ly, xrly)

Variable Definitions

M (4, 2150, o) = NZ gn
i=Nzij,
i = 2o + Naypih
Trht = To + Naypih
Ty = T, + Nriprh +w+ A
Toyy = To + NEpph —w — A
t=nAh

Table 4.1: Definition of the reflection coeflicient

with the extrapolation boundary conditions:

Plar = X190 (4.14)

where the operators: AL, AL, p% and x% are defined in table 3.2.

The movies 4.1-4.4 show numerically what happens to ¢¢* when this
form of v is used in (4.10). The movies depict three solutions all starting with
the same initial data with the first frame of each movie starting at ¢;,;; = 0
and advancing in increments of 16 to ty;,, = 240 with each frame having
an r domain from 0 to 256 and a ¢¢* range from 0 to 1. The dark lined
solution has been computed on a computational domain from —512 to 512
with 1025 points on the computational grid while the lighter line solutions
have been computed on a computational domain from —128 to 128 using 257
grid points. Thus the computational solutions should appear identical until the

pulse comes in contact with the smaller computational boundary at x = 128.



The dotted vertical lines in the figures give the location of the boundary of
the test computational domain, and the dashed vertical lines indicate where
the annihilation boundary layers begin. Movie 4.1 shows just the ¢¢* pulse of
the dark lined solution moving across the frame. The next movie 4.2 shows
the dark line solution and a light line solution with v(z) = 0. The different
behavior of the solutions becomes apparent when the pulse comes in contact
with the computational boundary of the light line solution at = = 128. With
v(xz) = 0, the light line pulse reflects off the boundary due to the extrapolation
boundary condition and essentially becomes a mirror reflection of the dark line
solution. In movie 4.3, a v defined by (4.12) with w =16, A =8 and H = 0.3
is used. Thus v becomes nonzero at * = 112 and ramps up to 0.3 at z = 128.
The movie shows what effect this has on the light line pulse as the pulse moves
into the region with nonzero v. As one can see, the pulse is quickly damped
out with no visible reflection. The obvious question now to ask is what effect
does this have on the numerical solution of (4.10) in the region where v(z) = 0.
Movie 4.4 shows the dark line solution of movie 4.1 and the light line solution
of movie 4.3. As one can see the solutions only appear to differ in the region
where v # 0. Thus this region acts as an annihilation layer which quickly forces
the solution to zero within the layer while apparently having little effect on the

solution interior to the annihilation layer.
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Figure 4.1: Time evolution of the matter distribution, ¢¢*, for the one di-
mensional Schrodinger equation on the larger computational domain. Limits:
computational domain (z: -512 to 512); frame domain (z: 0 to 256); frame
range (p: 0 to 1).
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Figure 4.2: Time evolution of the matter distribution, ¢¢*, for two solutions
of the one dimensional Schrodinger equation, one on the larger computational
domain and the other on the smaller computational domain without an anni-
hilation layer. Limits: computational domain-thin line (z: -128 to 128) -thick
line (z: -512 to 512); frame domain (z: 0 to 256); frame range (p: 0 to 1).
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Figure 4.3: Time evolution of the matter distribution, ¢¢*, for the one di-
mensional Schrodinger equation on the smaller computational domain with an
annihilation layer. Limits: computational domain (z: -128 to 128); frame
domain (z: 0 to 256); frame range (p: 0 to 1); boundary layer begins at =112
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Figure 4.4: Time evolution of the matter distribution, ¢¢*, for two solutions of
the one dimensional Schrodinger equation, one on the larger computational do-
main and the other on the smaller computational domain with an annihilation
layer. Limits: computational domain-thin line (z: -128 to 128) -thick line (z:
-512 to 512); frame domain (z: 0 to 256); frame range (p: 0 to 1); boundary
layer begins at x=112
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A quantitative analysis of the performance of the annihilation boundary
layers can be made by calculating the amount of reflection of the initial pulse.
Since the spatial integral of ¢¢* is conserved over time, this integral quantity
will be used to calculate the amount of reflection due in part to the extrapola-
tion boundary condition for various cases of v(z). The reflection coefficient for
this calculation is defined in table 4.1. The quantity M (¢, xjeft, Trignt) is just
the amount of mass contained with the left and right  boundaries, z;.s; and
Tright, at time {. The subscripts on M in the definition of R refer to the two
types of solutions shown in the previous movies. The test subscript refers to
the solutions with a computational range from z = —128 to = = 128 for which
v is varied to test the behavior of the annihilation layers. The control subscript
refers to the solution with a computational range from x = =512 to x = 512 to
which the test solutions are compared. Thus R measures the amount of mass
that remains in interior region where v(z) = 0 due to the pulse’s interaction
with the boundary as a fraction of the amount of mass that leaves the region

in the control computation.

Figures 4.5-4.7 give a comparison of the reflection coefficient versus H
for various values of w and A for the problem discussed above. Figure 4.5
compares various values of A for w = 4. As A increases from 0 — 4, the
amount of reflection for each value of H decreases dramatically. This is due to
the decrease in the gradient of the ramp up of v from 0 — H with increasing A.
All three figures show that the reflection coefficient decreases when increasing w
which is due to the increased damping of pulses entering the annihilation layer
before they hit the boundary and are reflected. The last figure shows that

one can make annihilation layers that allow less than 0.1% reflection but these
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Figure 4.5: One Dimensional Schrodinger Equation: Reflection Coefficient ver-
sus H for w = 4.

layers take up almost 40% of the computational domain. In one dimension this
is not a severe restriction as the domain size can usually be increased without

worrying about computational memory.
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Figure 4.7: One Dimensional Schrodinger Equation:
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4.2 Annihilation Boundary Layers for the Spherically
Symmetric Problem

The annihilation boundary layer has been shown to work quite well with the

one dimensional Schrodinger equation with no potential term, but for this

study, they must also work well with the three dimensional time dependent

Schrodinger equation coupled with Newtonian gravity. As an initial test of

these layers, I incorporate the annihilation layers into the spherically symmetric

equations:

dg % 0 ,0¢ ,
5 = 337 (r E) —iVé—v (4.15)

3] L0V .
325 (r W) = ¢ (4.16)

where the —v¢ term has been added to cause exponential damping in regions
where v # 0 and the partial derivatives with respect to r® are used so that the

regularity condition at r = 0 automatically satisfied by the difference equations:
t n : 1 T T T T t n t n

AL ¢h =1 §(a+A+—a_A_) — X3 V" —vi| 1y @] (4.17)

(e AL —a” A7) VI = gl g (4.18)

Again, the difference operators used above are defined in table 3.2. The condi-

tions at the computational boundary, r;, are:

Py = 105 (4.19)
n n h n
Vi, = Vi, ——V/. (4.20)
ry
and v; is:
0 for r; < rpg — (w + A)
v(rj)=% 0—=H as rj:ryg—(w+A) = ry—(w—A) (4.21)

H for r; > ryg — (w — A)
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These difference equations were used to evolve a given set of initial data; results
are shown in figures 4.8-4.9. These movies depict the radial density of matter,
r?¢¢*, within a given shell at radius r. Again, the dotted vertical lines in
the movie frames give the location of the boundary of the test computational
domain, and the dashed vertical lines indicate where the annihilation boundary
layers begin. Each movie starts with the same initial data at ¢;,; = 0 and
advances in increments of 61 = 1 to {ue = 15. Each frame has a domain
from 0 to 32 and an r?¢¢* range from 0 to 2. The dark lined solution has
been computed on a computational domain from 0 to 128 with A = 1/32
while the lighter line solutions have been computed on a computational domain
from 0 to 32 using the same value of h. Thus the computational solutions
should be identical until the matter distribution comes in contact with the
smaller computational boundary at r = 32. Movie 4.8 shows only the matter
distribution for the control solution which first implodes quite violently and
subsequently moves out across the frame. The next movie 4.9 shows a light
line solution computed with v(r) = 0. The different behavior of the solutions
becomes apparent when the pulse comes in contact with the computational
boundary of the solution at r = 32. The pulse clearly reflects off the boundary
due to the extrapolation boundary condition. Movie 4.10 shows the control
solution (dark line) with computational boundary at r = 128 and a test solution
(light line) with a v defined by (4.12) and w =4, A =2 and H = 3.0. Thus
clearly for the test calculation v becomes nonzero at r = 26 and ramps up
to 3.0 at z = 32. The movie shows the effect of the boundary layer. As one
can see, the distribution is damped with only a small amount of reflection off

the boundary. Also one can see that the dark and light line solutions differ
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by only relatively small features in the interior region. Thus the annihilation
boundary layer works quite well for the spherically symmetric time-dependent

Schrodinger equation coupled with Newtonian gravity.
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Figure 4.8: Time evolution of the matter distribution, r2¢¢* for the spherically
symmetric Schrodinger equation on the larger computational domain. Limits:
computational domain (r: 0 to 128); frame domain (r: 0 to 32); frame range

(r?d¢*: 0 to 2)
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Figure 4.9: Time evolution of the matter distribution, r2¢¢*, for the spherically
symmetric Schrodinger equation on the smaller computational domain without
an annihilation layer. Limits: computational domain (r: 0 to 32); frame domain

(r: 0 to 32); frame range (r’*¢¢*: 0 to 2)
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Figure 4.10: Time evolution of the matter distribution, r?¢¢* for the spherically
symmetric Schrodinger equation on the smaller computational domain with an
annihilation layer. Limits: computational domain-thin line (r: 0 to 32); thick
line (r: 0 to 128);frame domain (r: 0 to 32); frame range (r’¢¢* : 0to2);
boundary layer begins at x=26




A quantitative analysis of these boundary layers for this problem are
given in figures 4.11-4.13. Again, [ use the reflection coefficient defined in table
4.1 where the amount of matter contained within a sphere of radius r .., is
calculated from the numerical integral:

J
ML, Pouter = Jh) = 47 Y ¢7 67 7. (4.22)

j=1
Figures 4.11-4.13 are plots which indicate the dependence of the reflection
coefficient on H, w and A for the problem discussed above. In terms of the
reflection coefficient versus A for a given value of w and H, the results are
similar to those of the previous section. Decreases in the reflection of matter
are seen as A increases. Also there is a dramatic decrease in the reflection
coefficient as w is increased. As seen in figure 4.13, one can easily obtain
reflections less than 1% for an annihilation layer that takes up less than 20%

of the computational domain.
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Figure 4.12: Spherically Symmetric Schrodinger Equation: Reflection Coeffi-

cient versus H for w = 2.
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4.3 Annihilation Boundary Layers for the Three Di-
mensional Problem

This section is a discussion of the application of annihilation boundary layers to
the three dimensional time-dependent Schrodinger equation coupled with New-
tonian gravity. Given the pattern of the previous two examples, the Schrodinger

equation with an annihilation layer is:

06 i, .
% i iV 1) (1.23)

In finite difference ADI form, the only change to equations (3.24)- (3.27) is to

equation (3.27) which becomes:

Aoy . . Moo, .
(1 + 5 ('lXi ik T l/ijk)) Zﬁl — (1 + 5 (zxiVijk + Vijk)) ) (4.24)
Here v, is:

for |z;| < |zpa| — (w + A) or
0 for |y;| < [ypa| — (w + A) or
for |z < |2pa| — (w+ A),
as |z i |Tea] — (w4 A) — |2p4| — (w— A) or
v,y ) =4 0= H as |y|: [yea| = (w0 + A) = [gpa| — (w = A) or
as |zj| : [z3a] = (w+ A) = |26a] — (w = A),
for |z;| > |zpa| — (w — A) or
H for |y;| = [ypa| — (w — A) or
for |zx| > |zpa| — (w — A).

(4.25)
Figures 4.14-4.16 display nine cases of the numerical solution of the time de-
pendent Schrodinger equation coupled with Newtonian gravity using an anni-
hilation boundary layer. The dotted vertical lines in the movie frames give the
location of the boundary of the test computational domain, and the dashed
vertical lines indicate where the annihilation boundary layers begin. The first

movie uses the initial data for a single boson star which is given momentum
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in the = direction and shows three solutions generated on two computational
domains. One domain has physical dimensions —32 to 0 in the x, y and z direc-
tions and uses 65 x 65 x 65 grid points ' while the other domain has dimensions
of —32 to 32 along the z direction and —32 to 0 along the y and z directions
and contains 129 x 65 x 65 grid points. Thus any data displayed from these two
computational domains should appear similar until the star begins to interact
with the smaller computational boundary at * = 0. The data displayed in this

movie is the mass distribution along the x direction:

dMr MY 2 i}
d; =D or okt (4.26)

7=1k=1

Each frame has an z domain from —32 to 16 and a mass distribution range
from 0 to 12. The first frame is at ¢;,;; = 0. At = 1 so that the final frame is at
Lfinat = 15. The lighter two solutions are for v;;; = 0 with one generated on the
smaller computational domain and the other on the larger domain. Thus as the
pulse approaches the smaller computational physical boundary at = = 0, the
solution computed on the smaller domain is reflected while the larger domain
solution continues onward. The darkest solution was generated on the smaller
computational domain with a nonzero v with w = 2, A =2 and H = 0.3, As
the pulse for its solution enters the annihilation layer, the pulse is damped and

very little is reflected.

Figure 4.15 shows results from a computation for a single boson star
given the same amount of momentum in the positive z and y directions. Again,

the figure shows three solutions generated on two computational domains. One

!Computational grids are defined in the form nz x ny x nz where nz, ny and nz are the
number of grid points along the z, y and z directions respectively.
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domain has physical dimensions —32 to 0 in the z, y and z directions and
uses 65 x 65 x 65 grid points while the other domain has dimensions of —32
to 32 along the z and y directions and —32 to 0 along the z direction and
contains 129 x 129 x 65 grid points. Thus any data displayed from these two
computational domains should appear similar until the star begins to interact
with the smaller computational boundary at * = 0 and y = 0 along the z-axis.

The data displayed in this movie is the mass distribution along the y direction:

dM’rL nr mnz
5 = L2 S’ (.27)
Y =1 k=1

Each frame has an y domain from —32 to 16 and a mass distribution range
from 0 to 12 with the first frame starting at ¢;,;; = 0 and with each successive
frame advancing in time increments of 1.5 until the final frame at ty;,, =
22.5. The lighter two solutions are for v;;; = 0 with one generated on the
smaller computational domain and the other on the larger domain. Thus as
the pulse approaches the smaller computational physical boundary at y = 0, the
solution computed on the smaller domain is reflected while the larger domain
solution continues onward. The darkest solution was generated on the smaller
computational domain with a nonzero v with w = 2, A =2 and H = 0.3, As
the pulse for its solution enters the annihilation layer, the pulse is damped and
even less of the original pulse is reflected when compared to the damped pulse
in the previous movie, 4.14. This is due to the larger volume of the annihilation
layer near an edge of the computational box than there is near the center of a

side of the computational box.

The third movie, figure 4.16, uses initial data of a single boson star given

the same amount of momentum in the positive z, y and z directions and shows

75



three solutions generated on two computational domains. One domain has
physical dimensions —32 to 0 in the z, y and z directions? and uses 65 x 65 x 65
grid points while the other domain has dimensions of —32 to 32 along the z
y and z directions and contains 129 x 129 x 129 grid points. Thus any data
displayed from these two computational domains should appear similar until
the star begins to interact with the boundary of the smaller computational
domain near (z,y,z) = (0,0,0). The data displayed in this movie is the mass

distribution along the z direction:

dmp rem o
dzk =33 ¢l okt (4.28)

=1 j=1

Each frame has an z domain from —32 to 16 and a mass distribution range
from 0 to 12 with the first frame starting at ¢;,;; = 0 and with each successive
frame advancing in time increments of 2 until the final frame at {s;,,; = 30.
The lighter two solutions are for v;;; = 0 with one generated on the smaller
computational domain and the other on the larger domain. Thus as the pulse
approaches the smaller computational physical boundary at z = 0, the solution
computed on the smaller domain is reflected while the larger domain solution
continues onward. The darkest solution was generated on the smaller compu-
tational domain with a nonzero v with w = 2, A = 2 and H = 0.3, As the
darkest pulse enters the annihilation layer, the pulse is damped. Even less of
the original dark pulse is reflected when compared to the damped pulse in the
previous movie, 4.15. This is due too the larger amount of volume containing
the annihilation layer near a corner of the computational box than there is near

along an edge of the computational box.

?%i.e. toward a corner of the computational domain
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Figure 4.14: Three solutions of dM/dz showing the matter distribution collid-
ing with and going through a side of the smaller computational box. Limits:
computational domain: reflection and absorption solutions (z,y,z: -32 to 0),
test solution on larger computational domain (z: -32 to 32; y,z: -32 to 0);
frame domain: (x: -32 to 16); frame range (dM/dz: 0 to 12); boundary layer
starts at x = —4
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Figure 4.15: Three solutions of dM/dy showing the matter distribution collid-
ing with and going through an edge of the smaller computational box. Limits:
computational domain: reflection and absorption solutions: (z,y,z: -32 to 0),
test solution on larger computational domain (z,y: -32 to 32; z: -32 to 0);
frame domain: (y: -32 to 16); frame range (dM/dy: 0 to 12); boundary layer
starts at y = —4
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Figure 4.16: Three solutions of dM/dz showing the matter distribution colliding
with and going through a corner of the smaller computational box. Limits:
computational domain: reflection and absorption solutions: (z,y,z: -32 to 0),
test solution on larger computational domain (z,y, z: -32 to 32); frame domain:
(z: -32 to 16); frame range (dM/dz: 0 to 12); boundary layer starts at z = —4
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Figures 4.17-4.25 give a quantitative analysis of the qualitative results
displayed above. The reflection coefficient is computed using the same defini-

tion given in table 3.2 but now the mass is defined to be:

Nz Nyrne Nzppe

M(t,let,XTht) = E Z E gbzkgb?fkh?’ (429)

=Ny j=Nyiyse k=Nzp;

Figures 4.17-4.19 show the amount of reflection from the matter distribution
hitting the side of the computational domain for various values of w and A. As
in previous sets of reflection graphs, the amount of reflection drops rapidly with
increases in w and A for a given value of H. Figures 4.20-4.22 show the amount
of reflection from the matter distribution hitting the edge of the computational
domain. The amount of reflection is even less than that of the previous set of
graphs due to the increased volume of the annihilation layer which the matter
distribution encounters. Figures 4.20-4.22 show the amount of reflection from
the matter distribution hitting the corner of the computational domain. As
expected, the amount of reflection is even less than the previous two cases of the
matter distribution colliding with the side and the edge of the computational

domain.

Thus the annihilation boundary layer is quite effective in preventing
refections off computational boundaries for the multidimensional Schrodinger
equation. The major problem with these boundary layers is that the layers can
easily consume a large amount of the computational volume. In the example
movie shown above, the layer had a width of 4 along all sides of the computa-
tional box and thus the computational volume where the original Schrodinger
equation is being solved is reduced from 32° = 32768 to 24® = 13824. Thus the
annihilation layer takes up almost 68% of the computational volume. A solu-

tion would be to enlarge the physical size of the computational volume while
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Figure 4.17: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 2 and matter distribution hitting side of computational box.

keeping the number of grid points constant, but then one loses resolution. Thus
with the computer resources used to perform the calculations in Chapter 5, this

method can only be truly useful if used in conjunction with an adaptive mesh

refinement technique.
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Figure 4.18: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 4 and matter distribution hitting side of computational box.
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Figure 4.19: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 6 and matter distribution hitting side of computational box.
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Figure 4.20: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 2 and matter distribution hitting edge of computational box.
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Figure 4.21: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 4 and matter distribution hitting edge of computational box.
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Figure 4.22: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 6 and matter distribution hitting edge of computational box.



1 g 7 T T I I T T T
. - A
8 | & A B A B |
A
aN
= N
@) A
R 0.1 =+ A —
o Eoa 3
() L O A _
C =
8 = A a® A a4 &t o -
- AAAA A A A —
aN
= :
A
T 001 £ ot o 000 0]
o . E aat o © o O O 3
E o 3
= N o © s A= 0| 1
L o0 A A= ] i
s n o -
o OA= 2
0.001 ELoc oo b b e 1
0 1 2 3 4

Figure 4.23: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 2 and matter distribution hitting corner of computational
box.

87



T \\H\L\g

| \HHH\

E 0.1 E A AP s &% 3
9 E N A A E
Q ~ A =
e - L 8 .
T 0.01 & 0% =
S 2 o2 E
s - NP
A A A 4 A 4 B

2 0001 & 7 et -
’3 e 3
= . OoOoooOOOoOO:
® 0.0001 & o 00 s A= 0| o
- o s A= 2| 3

C . oA= 4 ]

1075 j‘ I I ‘ I I ‘ I I ‘ I I ‘i

0 1 2 3 4

Figure 4.24: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 4 and matter distribution hitting corner of computational
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Figure 4.25: Three Dimensional Schrodinger Equation: Reflection Coefficient
versus H for w = 6 and matter distribution hitting corner of computational
box.
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Chapter 5

Physical Results

This chapter discusses the initial results of a study of Newtonian boson stars
using the numerical techniques presented in the previous chapters. There were
three questions I wanted to answer about the dynamical behavior of the stable
solutions to the Schrodinger equation. One was: if the boson stars were given
linear momentum how similarly would they behave to Newtonian point masses?
The next question, which depends on the answer to the first, was: can I make
a boson star orbit about a fixed central potential? The final question was: how
do boson stars, which have been altered so that they can satisfy the ‘quantum
whirlpool’[14] condition discussed in Chapter 2, behave? The answers were
quite interesting but not unexpected. Before | describe these results , I give the
results of a Newtonian scaling law which shows that no matter how massive
a boson star is, the evolution of the star will always be the same when the

rescaling is taken into account.

5.1 Radial and Mass Scaling of Boson Stars

Since the physics for boson stars discussed in this thesis lies in the Newtonian
regime, no matter what the central density of the eigenvalue solution for a

boson star, the time dependent behavior of any initial set of data will always
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give a solution which is the same after rescaling. In order to assure this, one
must scale the dynamical parameters, such as momentum, in relation to the
central density of the boson star. This is because the central density determines
the mass and size of the star. For these purposes I define the size of a boson

star to be the radius of a star which contains 99% of the total mass of the scalar

field.

Thus I seek a scaling law for the radius of a boson star which tells how to
scale computational parameters such as the overall size of the computational
domain and the resolution of the mesh and dynamical parameters such as
momentum in order to obtain similar results when changing the initial central
density of the boson stars. Through a computational study of solving the
eigenvalue problem, (3.10) and (3.11), for different central densities, I found

that the radius which contains 99% of the mass of a boson star scales as:

TN

Rstar = 4.82(p(r =0))~ (5.1)
and the mass contained within that radius scales as:
Moy = 25.6 (p(r = 0))7 . (5.2)

Figure 5.1 shows a logarithmic plot of the radius of a boson star from which the
above scaling law was determined. The plot is over a large range of densities
with a slope of —% which is how the above scaling law was determined. Figure
5.2 shows the scaling law of the mass of a Newtonian boson star for a large
range of densities. The plot has a slope of % which gives the scaling law for
the mass of a star. This is the same result found by Ruffini and Bonazzola

in 1969 [48]. However, they were looking at the problem from the opposite
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standpoint. They wanted to determine the central density of a self gravitating
bose condensate in its ground state given the number of boson which comprise

the condensate.

With the large range of densities given in the plots, one might wonder
where the densities become relativistic. This would then give a regime for
which the results of this chapter are valid. As one will recall from chapter
2, the density is dependent on the square of the mass of the boson particle
making up the self gravitating bose condensate. Thus whatever one chooses
for the mass of the particle will determine where the dynamics of boson stars
must be described by Einstein’s equations coupled with the massive Klein-
Gordon equations. Thus the results of this chapter are physically meaningful
because of the similar behavior of the scalar field in the Newtonian regime and
because the mass of a particular boson being studied will determine the regime

in which a Newtonian approximation is valid.
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5.2 Boson Stars with Linear Velocity

A short description of how to give a boson star initial momentum was discussed
in Chapter 3. There it is stated that to give a momentum, p, to an initial state,
one simply convolves the complex wave function ¢(x, 0) by the factor exp(ip-x).
However, one must realize that the initial data is evolved by the difference form

of the differential equation:

Do 1 _,

where in this case m = 1. Thus p is actually a velocity, v, and so the initial

momentum of a boson star is M4, V.

The three plots of position versus time, Figures 5.3-5.5, show two cases
discovered when giving boson stars an initial velocity in the x direction. They
show the center of mass trajectory of a boson star with ¢(r = 0,t = 0) = 1.0
given an initial velocity together with the trajectory of a point like Newtonian
mass with the same mass and initial velocity of the boson star computed on
257 x 129 computational mesh with physical width 64.0 x 32.0 x 32.0. In figure
5.3 the star has been given an initial velocity of v, = 0.1. The trajectory of
the center of mass of the star is shown in comparison with that of a point like
Newtonian particle with the same mass. As one can see the initial parts of
the trajectories are quite similar, but as time goes on the center of mass of
the boson star begins to accelerate. In figure 5.4, the boson star is given an
initial velocity of v, = 1.0 which from equations (3.3) and (3.4) means that it is
traveling at the speed of light. As one can see, its initial trajectory is nearly the
same as the Newtonian point mass but in time the center of mass accelerates

slightly. In figure 5.5, the star has been given a velocity of v, = 10. The plot
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shows that the velocity of the center of mass is substantially less than that of

the point Newtonian mass but does stay constant in time.

The results for the v = 0.1 and v = 1.0 show that the errors acquired
from the integration of the difference equations become unacceptably large.
One can see this by realizing that the trajectory plot for v = 0.1 has over three
times as many time integration steps on the same computational grid as the
v = 1 trajectory plot. In both plots the trajectories of the point mass and
the boson star are initially quite similar but begin to diverge in time, and it is
apparent that this divergence of the paths becomes quite large around ¢ = 40.0.
The main source of these errors are probably due the boundary conditions for

the finite difference equations.

To understand what 1s occurring in the v = 10.0 plot, figure 5.5, one
needs to refer back to the hydrodynamical analogy discussed at the end of
chapter 2 and refer to the contour plots, 5.6, 5.7 and 5.8. Figure 5.6 is a
contour plot of the density of the boson star, p = ¢¢*, for v, = 0.1 with
contours at p = 0.5,0.1,0.05,...,5 x 107>, This shows the boson star moving
in the positive x direction, and as one can see the shape of the star is virtually
the same at ¢t = 0.0, £ = 50.0 and ¢ = 100.0 except at the p = 1.0x107% contour.
Contour plot 5.7 for v = 1.0 shows that the contours down to p = 1.07* remain
virtually the same at ¢ = 0.0, ¢ = 10.0 and ¢ = 20.0. Contour plot 5.8 shows
that the density of the boson star is initially symmetrical but becomes quite
distorted and flattened in time with the p = 0.5 contour no longer present at
t = 5.0 and the p = 0.01 contour no longer present at ¢ = 10.0. Physically, this
should not be possible as there should be no difference between a boosted boson

star and a boosted observer. The velocity v = 10.0 means that the initial data
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for the scalar field was convolved by the complex function, exp(¢10z). Thus
in the x direction the complex and imaginary parts have 10 times as many
oscillations as the v .= (1,0,0) case. Thus the mesh width of A = 0.25 used
for these calculations can not smoothly resolve the real and imaginary parts
of ¢(x,t). This causes the error which is seen in the distortion of the density.
It also means that the potential will be distorted which as one can see from
the right hand side of equation (2.58) can cause the star to dissipate in time.
This explains why the velocity of the star is not actually 10.0 and why the star

flattens out in time.

These results show that at velocities around and less than v = 1.0,
boson stars behave like point masses. However, as the integration continues,
the computational errors accumulate and begin to dominate the velocity of
the star. Figure 5.9 shows the difference between the trajectories of the star
and the point mass for three different mesh resolutions. As one can see, at
later times, the difference between the point mass trajectory and the boson
star trajectory grow smaller for the finer resolution runs. This indicates that
the errors in the computational solution are due to the finite difference errors

discussed in Chapter 3.

At this point, it is appropriate to give a caveat for the use of approxi-
mate boundary conditions. The runs for the above figures needed the solution
of Poisson’s equation for the Newtonian potential. The first time these calcu-
lations were done, Dirichlet boundaries were used in the numerical solution of
Poisson’s equation. This did not appear to affect the solution of the v = 1.0
and v = 10.0 cases. However, for the long time solution of v = 0.1, the tra-

jectory is shown in figure 5.10 along with that of a point mass. As one can
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see, the boson star actually slows down and begins moving in the negative x
direction. Thus the error due to the approximate boundary condition causes
the computational results to have no physical relevance. The previous runs

were done using a Robin boundary condition:

v_ Y (5.4)

ar
which is really only valid as r — oo but is obviously a better approximate

boundary condition than the Dirichlet boundary condition.
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Figure 5.3: Trajectories of a Newtonian point mass and a boson star with initial

central density of p = 1. Both have an initial velocity v = v, = 0.1.
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0.5,0.1,0.05,...5 x 107% and are highest in the center of the star.
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boundary condition.
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5.3 Boson Stars in a Central Potential

This section discusses the case of stars given an initial velocity as in the previous
section but now the stars are under the influence of not only their own potential

but also a constant central potential:

M"en ra
‘/central - _Litl (55)

Tcentral

where M cntrq1 18 a constant and r...s.q 1s the distance from a point on the
computational grid to the center of the potential. The value of V.cptrai(7central =
0) is a Ist order extrapolation from two radial points near the center of the

potential.

The results in this section are from three cases. The central potential for
all three cases is centered at the origin of the spatial grid with M_.,,,; = 100,
and the initial central densities of the boson stars are 1. The boson star of
the first case is centered initially at the point (z = 0,y = 1000,z = 0) with
an initial velocity v = (0.25,0.0,0.0). The figure 5.11 shows a comparison of
two y versus z trajectories for this case. One trajectory is for the center of
mass of the boson star while the other is for a point mass with the same initial
velocity and position as the boson star. As the plot, shows the initial part
of the trajectories are very similar, but the boson star moves further in the x
direction than the point mass while moving less in the y direction. Thus the
central potential does have a definite effect on the boson star but the errors of
the difference scheme seen in the previous section are dominating the motion

of the star.

1This mass is roughly four times that of the mass of the boson star for these three cases.
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The 2nd case studied in this section is of a boson star centered at (z =
0,y = 100,z = 0) with an initial velocity, v = (1.0,0.0,0.0). The figure 5.12
shows a comparison of the trajectories of the center of mass of the boson star
and a point mass with the same initial position and velocity. In this plot, the
star moves further in the y direction than the point mass. Thus the influence
of the central potential on the motion of the boson star is greater than the in

the first case. This is expected since the star is closer to the origin in this case.

The third case is of a boson star centered at (x =0,y = 16,z = 0) with
an initial velocity of 2.5 in the x direction. This is the velocity for a circular
orbit of a point mass in the central potential described above. As one sees
from the plot of the trajectories of the center of mass of the the boson star and
the point mass, the boson star appears to follow the trajectory of the point
mass quite closely for the first third of the orbit. Afterwards the tidal forces
on the star begin to dominate and the center of mass quickly spirals towards

the center of the central potential.

The two sets of contour plots of density in the z = 0 plane give an
indication of how the central potential begins to dominate the dynamics of the
boson star. Figure 5.14 shows p = 0.5,0.05,...,5 x 107° contours of the boson
star for the 2nd case at times t = 0 and ¢ = 25. As one sees, the boson star is
slightly distorted from its original shape in a similar fashion to the v, = 1 linear
momentum case in the previous section. Thus one can again conclude that the
central potential has a smaller effect on the trajectory of the boson star than
the point mass because of errors occuring in the finite difference equations used

to evolve of the star.

The second set of contour plots, 5.15, shows the domination of the tidal
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forces of the central potential on the boson star. At time t = 12.5, the exterior
contours are quite distorted from their (¢t = 0) original shape. The two interior
contours still have a somewhat circular shape. At ¢ = 25 the boson star is quite
distorted from its original shape, and the central contour, p = 0.5, is now gone.
At the time ¢t = 62.5, most of the mass of the star has spiraled to the center of
the fixed potential while a large fraction of the mass has come in contact with

the boundaries of the computational domain at y = —32.

Another interesting set of data from the third case is the average mo-
menta of the system as a function of time. This can be calculated in the usual

quantum mechanical way:

<p>= —¢/¢*v¢d3x (5.6)

which for the computational data ¢, is approximated via:
< Pe >= —TEzjk ¢ijk ( i1k i—ljk) (5.7)
< py >= _722']% ik ( i1k ij—lk) (5.8)

where h is the grid spacing of the computational grid. Figure 5.16 shows plots
of the average momenta of the scalar field versus time. For ¢ < 20 the x and y
momenta follow the standard sinusoidal trajectories of an orbiting point mass,
but as the tidal effects begin to dominate the solution, the momenta loose the

sinusoidal patterns.

These results along with those of the previous section show that it may
be impossible to have a stable boson star orbit about a central potential. The
errors dominate the solution when the star is far from the central potential while

tidal forces from the central potential cause disruptive tidal effects on the star
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when the star is close to the central potential. A better study could be made
with an adaptive mesh computational scheme which will allow one to resolve
the high density parts of the star while using relatively few computational grid

points in areas of little physical activity.
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Figure 5.11: Trajectories in the zy plane of a boson star with an initial central
density, p = 1 and a Newtonian point mass whose trajectories are curved
because of the central potential centered at the origin. Both the star and point
mass star start with an initial velocity of v, = 0.25.
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Figure 5.12: Trajectories in the zy plane of a boson star with an initial central
density, p = 1 and a Newtonian point mass whose trajectories are curved
because of the central potential centered at the origin. Both the star and point
mass star start with an initial velocity of v, = 1.0.
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Figure 5.13: Trajectories in the zy plane of a boson star with an initial central
density, p = 1 and a Newtonian point mass whose trajectories are curved
because of the central potential centered at the origin. Both the star and point
mass star start with an initial velocity of v, = 2.5.
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Figure 5.15: Contour plots of mass density at different times for a boson star
given initial velocity v, = 2.5 whose trajectory is influenced by the central
potential centered at the origin. The contours are at densities of 0.5,0.05,...5x
107° and are highest in the center of the star.
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Figure 5.16: Plots of the average = and y momenta as a function of time for
the boson star with an initial distance of 16 from center of the central potential
and an initial velocity in the x direction of v, = 2.5.
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5.4 Boson Stars with Angular Momenta

As mentioned in the section 2.3, the hydrodynamical equations of the Schrodinger
equation do allow rotational solutions but they must have quantized angular
momenta and the central density must be zero in order to have a single-valued
solution. The results for this section are for the two dimensional equivalent to
the three dimensional version of equations (1.1) and (1.2). This is because it
was found that smooth resolution of the dynamics of the problem is impossible
even for grids with 257% points.? For the two dimensional equivalent problem

a maximum of 4097?% points is allowed.

The only part that changes in the solution of the computational differ-
encing scheme ? is that the eigenvalue solution to the potential V has a solution
of —Cy4In(r) at infinity instead of —C'34/r. So the Dirichlet boundary condition
used in solving Poisson’s equation for the Newtonian potential is much more
prevalent and causes the difference scheme to have O(h) convergence instead

of O(h*) convergence.

As one will recall from the chapter 3, to give a boson star an angular
momentum .J, = N in the z direction, one simply convolves the complex scalar
field with the function exp(iN¢). As in section 5.2, the Schrodinger equation
being solved, equation (5.3), is for a particle mass of m = 1 so that N actually
determines the angular velocity of the scalar field. Also since a single valued
solution of the Schrodinger equation with nonzero rotation must have a central

density of zero, the initial data are multiplied by the function, 1 — exp(—r?).

2This is the largest computational domain allowed for the three dimensional computa-
tional difference problem discussed in this dissertation.
3Besides from no longer differencing in the z direction.



Thus the initial data for a boson star with angular velocity, N, are given by:

A(x,t =0) = deigen (r = (2* + yQ)%) eNe (1 - 6_T2) (5.9)

where ¢.i4e, 1s the initial value solution to the two dimensional eigenvalue

problem and ¢ = tan™'y/z.

The plot 5.17 shows the average angular momentum of a boson star with
Geigen(r = 0) = 1 for various values of initial angular momentum. The aver-
age angular momentum was calculated using the quantum mechanical angular
momentum operator:

0 0

On the computational domain, the average angular momentum is calculated

from:

th
<J, >= —5 Zqﬁff (2: (Gijar — Dij1) — ¥ (Pig1; — Piz1j)) - (5.11)

The plot shows that the average angular momentum is initially constant but
drops off towards zero for all cases except for N = 1. The reason for this is
computational, not physical, as one can see from the three sets of movies, 5.18,
5.19 and 5.20. The movies show density data for N = 1,2 and 5 along the
z axis from ¢ = —32 to x = 32 with the initial data centered at the origin.
The first movie shows the N = 1 case. Successive frames are separated by
At =125 from t = 0.0 to ¢t = 187.5. The range of each frame is from a density
of p = 0.0 to a density of p = 0.09 while the data in the initial frame has a
maximum Py, = 0.29. The behavior of these ‘quantum whirlpools’ is quite
interesting. There i1s a nearly periodic ringing of the data in which density

flattens out due to the centripetal acceleration but then gravitational forces
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pull the matter back and then the process repeats itself. This all occurs while

the average angular momentum stays nearly constant.

Figures 5.19 and 5.20 show the evolution of density profiles with N = 2
and N = 5 respectively. The domains of each frame are the same as in figure
5.18 while the range goes from p = 0.00 to p = 0.01. In figure 5.19 the time
steps of each successive frame are in increments of 1.25 with the first frame
starting at time { = 0.0 and the last frame ending at time ¢ = 18.75. As one
sees, the matter distribution begins to flatten out as in the first movie, but the
larger angular velocity forces more matter out to the computational bound-
ary. Subsequent frames show that matter is reflected off the computational
boundary. The annihilation boundary layer takes up 23% of the computational
domain for these runs but appears to have little effect. Actually, in this case,
it would be better to increase the size of the computational domain than to
use annihilation boundary layers but that would increase the amount of com-
putational resources needed for these runs by a factor of n,ew?/n,ld?* for the
amount of memory needed and n,ew?*/n,ld* for the amount of computational
time where n,ew and n,ld are the new and old number of grid points in one

spatial dimension.

Figure 5.20 shows that the behavior of the mass distribution is quite
similar when comparing the same initial density distributions with different
values of N. In figure 5.20, the time steps of each successive frame are in
increments of 0.5 with the first frame starting at time ¢ = 0.0 and the last
frame ending at time ¢ = 7.5. Each frame shows a density distribution which
is very similar to its respective frame in movie 5.19. This is to be expected,

as the average angular momentum for the N = 5 figure is initially 2.5 times
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that of the N = 2 figure while the time step from one frame in the N = 5
figure is a factor of 2.5 times shorter than the time step for the N = 2 movie.
The major difference is that the density distributions are not as smooth as
for the N = 2 distributions. This means that one not only needs a larger
computational domain but also greater resolution to obtain results which are
not dominated by errors incurred from the finite difference approximation of

the original differential equations.
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Figure 5.17: Plot of the average angular momentum as a function of time for
a boson star set up initially as a ‘quantum whirlpool’ for quantized values of
angular momenta.
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Figure 5.18: Movie of the density distribution of the N = 1 ‘quantum whirlpool’
along the x-axis at successive times with time step size of 12.5. The first frame
is £ = 0.0, and the last frame is t = 187.5. The domain goes from z = —32 to
x = 32 and the range extends from p = 0.0 to p = 0.09.
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Figure 5.19: Movie of the density distribution of the N = 2 ‘quantum whirlpool’
along the x-axis at successive times with time step size of 1.25. The first frame
is £ = 0.0, and the last frame is t = 18.75. The domain goes from z = —32 to
x = 32 and the range extends from p = 0.0 to p = 0.01.
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Figure 5.20: Movie of the density distribution of the N = 5 ‘quantum whirlpool’
along the x-axis at successive times with time step size of 0.5. The first frame
is t = 0.0, and the last frame is £ = 7.5. The domain goes from z = —32 to
x = 32 and the range extends from p = 0.0 to p = 0.01.
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Chapter 6

Conclusion

There are several conclusions from this work. One is that time dependent
numerical solutions of three dimensional PDEs require careful planning and
study. As one has seen, the coupling of the Schrodinger and Newtonian grav-
ity equations lead to added algorithm complexities. Thus, there is a need to
understand the errors of the difference scheme used in solving this coupled
system of equations. By choosing a Crank-Nicolson scheme, the difference
technique is guaranteed to be unconditionally stable. However, uncondition-
ally stable difference schemes for solving time dependent problem are usually
implicit methods which means that one will have to solve large systems of linear
equations. Thus optimal! techniques for solving these sets of linear equations
are needed. After one has a difference scheme in hand, it must be rigorously
tested through convergence checking. Convergence tests need to be performed
to ensure that for a given spatial and temporal spacing, the solution given by

the difference scheme is a good approximation of the analytic solution of the

PDEs being studied.

Another conclusion is the need to implement absorbing or other well be-

1By optimal it is meant that the number of calculations to solve N linear equations is of

O(N).
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haved boundary conditions when fitting a finite computational domain within
an infinite physical domain for time dependent problems. Invariably, this means
the difference equations will use approximate boundary conditions. Chapter
4 showed that annihilation boundary layers are a good method to use when
studying boson stars. They absorb outgoing matter with little reflection and
preserve the validity of the difference solution in the interior of the computa-
tional domain. However, for effectiveness they require a large number of grid
points which makes them quite expensive to use in currently practical uni-grid
computations. This gives an argument for the use of an adaptive mesh refine-
ment technique which would allow coarser grids near the boundaries and will

reduce the computational cost of annihilation boundary layers.

The results of chapter 5 along with the hydrodynamic analogy given at
the end of chapter 2 show that the errors due to solving the finite difference
equations are quite apparent when boson stars are given linear momentum.
The deceleration of boson stars seen in the linear momentum section can be
explained by nonsymmetric contours in the density of the boson stars. The
attempt to orbit a boson star was only partially successful. It would be inter-
esting to perform a calculation on a much larger computational grid. There the
tidal effects of the central potential are unimportant, but the current inability
to precisely predict the motion of a boson star when given linear momentum
could prevent attempts to have a star orbit around a fixed central potential.
Again, this is an argument for the need of an AMR code to solve (1.1) and
(1.2).

A parallel AMR code has been developed[21] using the Distributed
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The code uses an algorithm based on that of Berger and Oliger [7] with an adap-
tation which uses a shadow hierarchy of grids in calculating the local truncation
error. [6] The clustering algorithm for regridding is described in [20] which dis-
cusses the Berger and Rigoutsos clustering method[2]. One current holdup to
determining how well this method works are multiple grid input /output parallel
data structures. Without these data structures, detailed analysis of the per-
formance of the three dimensional parallel adaptive code would be extremely

tedious.

The possibilities for future research based on the results of this disser-
tation are quite numerous. As mentioned in the introduction this code can be

adapted to study large structure formation by solving equations:

% = #V%W (6.1)
] (6.2)

where a(t) = (t/t0)2/3 is the Robertson-Walker scale factor, ¢y is the current
age of the universe in the computational dimensionless units described at the
beginning of Chapter 3, and a® < ¢¢* >= p..is is the critical density at and
above which the universe continues expanding. Thus, by incorporating the
scale factor into the boson star code and using periodic boundary conditions,
one can observe large scale structure formation dominated by dark matter from
an initial density distribution of the dark matter. We believe that the adaptive
code could be competitive with particle mesh codes [12, 10] and therefore worth

trying out.

One could also use the boson star code to do simulations of collisionless

matter. The code could be set up to do high resolution simulations of galaxy
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formation from dark matter[27] which might allow one to correctly simulate
the structure of dark matter haloes in dwarf galaxies which particle codes are
unable to resolve correctly[5]. Of course this code would only be valid when

two body interactions are unimportant[42].

At the current time there is a resurgence of interest in boson stars with
recent preprints released on rotating boson stars[54], simulating galactic halos
using boson stars[34] and axially symmetric boson stars[51]. Each of these pa-
pers only discusses stationary solutions. Thus given the data of there solutions,
the boson star could quickly confirm the validity and stability of their solutions

as well as lead to some interesting dynamical studies.
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