Numerical Simulations of Gravitational Collapse
by
Frans Pretorius

B.Eng., The University of Victoria, 1996
M.Sc., The University of Victoria, 1999

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
in
THE FACULTY OF GRADUATE STUDIES

(Department of Physics and Astronomy)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
August 23, 2002

© Frans Pretorius, 2002

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the
University of British Columbia, I agree that the Library shall make it freely available for reference
and study. I further agree that permission for extensive copying of this thesis for scholarly purposes
may be granted by the head of my department or by his or her representatives. It is understood
that copying or publication of this thesis for financial gain shall not be allowed without my written
permission.

(Signature)

Department of Physics and Astronomy

The University Of British Columbia
Vancouver, Canada

Date

ABSTRACT ii

ABSTRACT

In this thesis we present a numerical study of gravitational collapse, within the framework of
Einstein’s theory of general relativity. We restrict our attention to spacetimes possessing axial
symmetry, and incorporate a massless scalar field as the matter source.

Our primary objectives are the study of critical phenomena at the threshold of black hole
formation, and the stable simulation of black hole spacetimes. An integral part of the thesis
is concerned with developing the necessary numerical tools and techniques to successfully solve
these problems. To that end, we have implemented a variant of Berger and Oliger’s adaptive mesh
refinement (AMR) algorithm, with enhancements that allow us to incorporate elliptic equations into
the AMR framework. Using this code, we simulate critical collapse of axisymmetric distributions
of scalar field energy, which is the first time this has been done in the non-perturbative regime.
For several classes of initial data, our results are consistent with a hypothesized universal critical
solution. However, from the collapse of prolate initial data, we find indications that there may
be an additional, non-spherical unstable mode. This putative instability eventually causes a near-
critical echoing solution to bifurcate into two, causally disconnected solutions that each resemble the
spherical critical solution. Furthermore, we speculate that this bifurcation process would continue
indefinitely at threshold, resulting in an infinite cascade of near-spherical solutions. However, the
evidence for this second unstable mode is not conclusive, and more work will be needed, possibly
with an enhanced code, to answer this question.

To numerically study spacetimes containing black holes, one needs to avoid the singularities
that occur inside of the holes. The technique that we have implemented to accomplish this is
called black hole excision. This aspect of the code is still work-in-progress, for we have not yet
incorporated excision into the AMR-based code, and the class of excision boundary conditions we
currently employ are inconsistent with the complete set of field equations. However, we are able
to obtain stable simulations using a constrained evolution scheme, and we present two preliminary
examples, one showing black hole formation, the other a head-on black hole collision.

CONTENTS iii

CONTENTS

Abstract L e ii
Contents e iii
List of Tables v
List of Figures e vi
Acknowledgements L viii
1 Introduction e e 1
1.0.1 Notation. e 3

1.1 The Field Equations of General Relativity 3
1.2 Gravitational Collapse 5
1.3 Critical Phenomena, 6
1.4 Black Hole Collisions and Gravitational Waves 7
1.5 Numerical Solution of the Field Equations 9
1.5.1 The ADM formalism 0 e 10

1.5.2 Coordinate and Slicing Conditions 12

1.5.3 Black Hole Excision 14

1.5.4 Solution of Equations via Finite Difference Techniques 15

1.5.5 Adaptive Mesh Refinement 23

1.5.6 Solution of Elliptic Equations via Multigrid 28

2 Numerical Evolution in Axisymmetry 34
2.1 The 2+1+1 Formalismo 34
2.1.1 A Scalar Field Matter Source 37

2.1.2 Incorporating Angular Momentum using a Complex Scalar Field 37

2.2 Structure of the Unigrid Numerical Code 38
2.2.1 Coordinate System and Variables 38

2.2.2 Regularity and Outer Boundary Conditions 40

2.23 Imitial Data L 41

2.2.4 Discretization and Solution Scheme 41

2.2.5 Finding Apparent Horizons, 43

2.2.6 Black Hole Excision Technique 44

2.2.7 Convergence, Consistency and Mass Conservation Results 47

2.3 Structure of the Adaptive Code e 49
2.3.1 Modifications to Berger and Oliger’s Algorithm 52

2.3.2 Multigrid on an Adaptive Hierarchy 56

2.3.3 Clustering o o i e e e 58

2.3.4 'Truncation Error Estimation 000, 58

2.3.5 Interpolation and Restriction Operators 59

2.3.6 Inmitializing the Grid Hierarchy 59

2.3.7 Controlling High-Frequency Grid-Boundary Noise 60

2.3.8 Dealing with Multigrid Failures 62

CONTENTS iv

2.3.9 Convergence, Consistency and Mass Conservation Results 63

2.4 Probing the Geometry of a Numerical Solution 67
2.4.1 GeodeSiCS e e e e 70

3 Scalar Field Critical Collapse 72
3.1 Spherically Symmetric Initial Data 0L L Lo 73
3.2 Small Deviations from Spherical Symmetry 7
3.3 Large Deviations from Spherical Symmetry 82
3.3.1 Equatorial-Plane Antisymmetric Scalar Field Collapse 82

3.3.2 Highly Prolate Initial Scalar Field Profiles 84

3.4 Sample AMR Mesh Structure L 89

4 Black Hole Excision 101
4.1 Scalar Field Collapse e 101
4.2 Black Hole Collisions e 102
4.2.1 Boosted Scalar Field Initial Conditions. 108

4.2.2 Excision Boundary Conditions 108

4.2.3 A Sample Merger e 109

5 Conclusions and Future Work 0 o0, 117
Bibliography L 118
A Equations and Finite Difference Operators 124
A.1 Analytic Equations oL 124
A.2 Finite Difference Operators o0 v it it 126

B Data Analysis and Visualization 0L o0 129
B.1 The Data-Vault Virtual Machine Specification 129
B.1.1 Register Structure 129

B.1.2 Instruction Set L 130

B.1.3 Execution Model 134

B.2 Current Implementation 135

B.2.1 Generalized Index Vector format 135

LIST OF TABLES v

LIST OF TABLES

2.1

3.1
3.2
3.3
3.4

B.1
B.2
B.3
B.4

AMR code test: £5 and £, norms of the data shown in Figures 2.11 and 2.12 63
Extremes of the central value of ® in near-critical spherically symmetric collapse . . 74
Extremes of the central value of ® in near-critical, near-spherically symmetric collapse 81
Extremes of the local central values of ® in near-critical antisymmetric collapse . . . 86
Extremes of the central values of ® in near-critical prolate collapse 89
DV register structure definitiono 130
DV time structure definitiono oL 130
DV level structure definitiono oL 132
DV grid structure definition o o 132

LIST OF FIGURES vi
LIST OF FIGURES

1.1 A schematic representation of the ADM space+time decomposition 11
1.2 A schematic demonstration of the CFL condition 21
1.3 An example of a Berger and Oliger mesh hierarchy 25
1.4 A pseudo-code representation of the Berger and Oliger time stepping algorithm . . . 26
1.5 A pseudo-code representation of the FAS, V-cycle multigrid algorithm 32
2.1 The effect of an excision surface on the definition of grid points and FD stencils . . . 45

2.2 A pseudo-code representation of the reconstruction function and smoothing filter
used to smooth grid functions during excision 48
2.3 Test of the unigrid code for Brill wave evolution 50
2.4 Test of the unigrid code for scalar field evolution 51

2.5 A pseudo-code representation of the Berger and Oliger time stepping algorithm, as
modified and implemented in our code. Lo oL oL 54

2.6 An illustration of the technique we use to extrapolate elliptic variables within the
AMR framework 55
2.7 A hypothetical MG grid configuration that will adversely affect execution speed . . . 57
2.8 An illustration of the interpolation method used for & and Q during AMR evolution 60

2.9 A pseudo-code description of part of the interpolation method used for and Q
during AMR evolution 61
2.10 AMR code test: a at t = 2.34, showing the AMR hierarchy 64
2.11 AMR code test: comparison of o to a unigrid evolution, at t =2.34. 65
2.12 AMR code test: comparison of ¢ to a unigrid evolution, at t =2.34 66
2.13 AMR code test: depth of the hierarchy as a function of time 68
2.14 AMR code test: MADM - -« o v v v e e e e e e e e e e e e e e e e e e e 68
2.15 AMR code test: conSiStencyo oo e e e e 69
2.16 AMR code test: convergence factors L. Lo 69
3.1 [Initial profile of @, for spherically symmetric critical collapse 73

3.2 In(Rmax) vs. In(A* — A) from sub-critical evolution of spherically symmetric initial
data, with €, = 1073, 75

3.3 In(Rmax) vs. In(A* — A) from sub-critical evolution of spherically symmetric initial
data, with e, = 1074 76

3.4 Central value of ® as a function of —In(7* — 7), from spherically symmetric critical
collapse L 77
3.5 Evolution of ® from spherically symmetric critical collapse. 78

3.6 In(Rmax) vs. In(A* — A) from sub-critical evolution of near-spherically symmetric
initial data, with e, = 1073 79

3.7 In(Rmax) vs. In(A* — A) from sub-critical evolution of near-spherically symmetric
initial data, with e, =107% 80

3.8 Comparison of the central value of ® versus — In(7* — 7), for near-spherically sym-
metric initial data. Lo oL 81
3.9 Apparent horizon shapes from super-critical, antisymmetric collapse 83
3.10 Imitial profile of ® for antisymmetric critical collapse 84
3.11 Evolution of ® from antisymmetric initial data 85

LIST OF FIGURES vii

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

B.1
B.2
B.3
B.4

Late-time profile of ®, evolved from near-critical antisymmetric initial data 86
In(Rmax) vs. In(A* — A) from sub-critical evolution of the antisymmetric initial data 87
Initial profile of ®, for prolate critical collapse 90
In(Rmax) vs. In(A* — A) for e =1/2,1/4,1/6 and 1/8 prolate, sub-critical evolution . 91
Central value of ® as a function of —In(7* — 7), from prolate critical collapse 92
Near-critical evolution of ® from € = 1 initial data 93
Near-critical evolution of ® from e =1/2initial data 94
Near-critical evolution of ® from e =1/4 initial data 95
Near-critical evolution of ® from e =1/6 initial data 96
Near-critical evolution of ® from e =1/8 initial data 97
Apparent horizon shapes from super-critical prolate collapse 98
AMR sample mesh structure 1: antisymmetric collapse 98
AMR sample mesh structure 2: antisymmetric collapse 99
AMR sample mesh structure 3: antisymmetric collapse 99
AMR sample mesh structure 4: antisymmetric collapse 100
AMR sample mesh structure 5: antisymmetric collapse 100
Prolate scalar field collapse: evolutionof ® 1 103
Prolate scalar field collapse: evolutionof ® 2 104
Prolate scalar field collapse: apparent horizon shapes 105
Prolate scalar field collapse: ADM mass it 105
Prolate scalar field collapse: area mass estimate 106
Prolate scalar field collapse: consistency plots 106
Prolate scalar field collapse: convergence factor fore 107
Prolate scalar field collapse: “long term” evolution 107
A schematic representation of a maximal slicing of a black hole spacetime 110
Black hole merger: evolutionof 9 oL oL o 112
Black hole merger: ADM and area mass estimates 113
Black hole merger: consistency check oo 0oL 113
Black hole merger: Wy -7 114
Black hole merger: 8% boundary conditions 0L 115
Black hole merger: apparent horizons. oo L. 116
A diagrammatic description of the Data-Vault register structure 131
DV screenshot 1 L e 136
DV screenshot 2 L L 137

DV screenshot 3 e e e e e e e e e e e e e e e 138

ACKNOWLEDGEMENTS viii

ACKNOWLEDGEMENTS

I would like to express my gratitude to Matthew Choptuik, my research advisor, for his guidance
and wisdom throughout this project. I would also like to thank: my collaborators in the research,
Eric Hirschmann and Steve Liebling (in addition to Matthew Choptuik), who initiated this study
of axisymmetric collapse and graciously allowed me to join the project; the additional members of
my supervisory committee—Kristin Schleich, William Unruh and Jim Varah —for many helpful
comments; my friends and colleagues in the UBC relativity group, who helped create a pleasant and
stimulating research environment; and my family, for their support and encouragement. Additional
thanks go to Inaki Olabarrieta for helping to check several chapters of this manuscript. The
majority of simulations used to obtain results presented in this thesis were run on the vn computer
cluster at the University of British Columbia and the ML ACI cluster at the University of Calgary.
vn is funded by the Canadian Foundation for Innovation (CFI) and the BC Knowledge Development
Fund. MACI is funded by the Universities of Alberta, Calgary, Lethbridge and Manitoba, and
by C3.ca, the Netera Alliance, CANARIE, the Alberta Science and Research Authority, and the
CF1I. Finally, I would like to acknowledge the National Research Council of Canada and The Izaak
Walton Killam Fund for their financial support.

CHAPTER 1. INTRODUCTION 1

CHAPTER 1
INTRODUCTION

Einstein’s theory of general relativity is a theory about the nature of space and time. Space and
time, or spacetime for short, is the arena in which we live, and is a structure of sufficient complexity
to enable us to quantify notions of distance and time. General relativity describes this structure
of spacetime as a four dimensional manifold, endowed with a Lorentzian geometry. A Lorentzian
geometry is one with an indefinite metric, allowing one to classify the distance interval between two
events in spacetime as timelike (negative distance-squared), spacelike (positive distance-squared)
or lightlike (zero distance). Furthermore, general relativity predicts that the particular geometry
in which we live is governed by the matter content of the universe, and conversely that matter, in
effect, “experiences” the geometry as the force of gravity.

One of the remarkable predictions of general relativity is the phenomena of gravitational col-
lapse to a black hole, whereby a local region of spacetime—the black hole—becomes causally
disconnected from the rest of the universe. This means that observers interior to the black hole
cease to be able to communicate with those outside of it. The inside of a black hole is intrinsically
dynamical, and singularity theorems [1] prove that some sort of geometric pathology (singularity)
must occur inside of the black hole. There is rather strong circumstantial evidence that black holes
are common astrophysical objects—“supermassive” black holes are thought to exist in the centers
of most galaxies [2], and it is believed that a certain fraction of stars with initial masses greater
than approximately 10 solar masses collapse to black holes in the final stage of their evolution
[3]. Furthermore, recent studies of the collapse of simple matter fields ! have found a surprisingly
rich set of phenomena, dubbed critical phenomena, at the threshold of black hole formation [4].
A distribution of energy near the threshold of black hole formation is one for which a small per-
turbation could either cause the energy to collapse and form a black hole, or evolve to a different,
stable configuration not containing a black hole (for instance, the energy could disperse to infinity).
The two characteristic features of critical phenomena are the apparent universality of the critical
solution, where the same critical solution is observed regardless of the configuration of the initial
distribution of energy, and power-law scaling of length scales that arise in near-critical solutions.
In Sections 1.1 - 1.4 of this thesis we will give a more detailed introduction to general relativity,
black holes, and critical phenomena.

The primary goal of the work described in this thesis is to develop a numerical code that can
solve Einstein’s field equations with axisymmetry, and apply it to a wide range of problems in
black hole physics. The equations of general relativity are too complicated to hope for analytical
solutions in many situations of interest, hence numerical solutions are essential to gain more insight
into the nature of the theory. Aside from theoretical interest, improving our understanding of the
predictions of general relativity is becoming increasingly important in describing many astrophysical
processes in our universe. In the near future, gravitational wave “observatories”, including LIGO,
VIRGO, GEO, TAMA and AIGO [5, 6, 7, 8, 9] will begin to operate, and if there is any hope to
gain information from signals that may be detected, one needs to have a better understanding of
dynamical, strong-field gravity than what we currently have.

There are two main reasons why we are developing an axisymmetric code. First, the imposed
symmetry is not too restrictive, in the sense that we can still simulate numerous phenomena
of theoretical and astrophysical interest, including gravitational collapse and critical phenomena,
black hole accretion disks and head-on black hole collisions. Second, todays supercomputers, let

1Such as scalar fields, perfect fluids, and pure gravitational waves—in other words not the “complicated” forms
of matter that would be involved collapse in an astrophysical setting.

CHAPTER 1. INTRODUCTION 2

alone the computer systems that we have ready access to, are not powerful enough to solve the
full equations in 3D (three spatial dimensions) with a reasonable level of accuracy. Therefore, by
restricting our attention to a 2D system, we can solve a class of problems with relatively high
accuracy, even on modest computers.

In addition, there are many unresolved issues in numerical relativity, including questions of the
stability of various formulations of the field equations, coordinate choices and boundary conditions.
Also, to-date there has not been enough exploration of numerical techniques and algorithms that
are expected to be essential in obtaining accurate solutions. Most notable, perhaps, is the rela-
tive small number of finite-difference based codes incorporating adaptive mesh refinement (AMR)
techniques—following the pioneering work of Choptuik [4], there have been few codes that have
used AMR [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. By focusing on the less complicated two
dimensional case, we can hope to more rapidly address these issues.

The axisymmetric code that we are building is based upon a finite-difference solution of the
field equations. We use the 2+1+1 formalism [21] to arrive at the set of differential equations that
need to be solved. This formalism applies the common ADM [22] space-plus-time decomposition
to a dimensionally reduced spacetime, obtained by dividing out the axial Killing vector[23]. In
Section 1.5 we review the ADM formalism, and relevant aspects of finite-difference based solutions
of partial differential equations, including the solution of elliptic equations via multigrid, and the
solution of hyperbolic equations using AMR. In Chapter 2, we describe the 2+1+1 formalism, and
details of the unigrid and AMR-capable codes that we have developed to solve the corresponding
equations. In the current version of the code we have not incorporated the effects of angular
momentum.

The first physical problem that we are applying the AMR code to is the critical collapse of
a massless scalar field (Klein-Gordon field). To our knowledge, this is the first non-perturbative
study of critical behavior of the Einstein-Klein-Gordon system away from spherical symmetry.
Choptuik conjectured that critical behavior is universal, and should be visible at the threshold of
black hole formation in a large class of generic families of initial data [4]. An essentially equivalent
statement of this conjecture is that the critical solution is one-mode unstable [24, 25]; in other
words, all perturbations of a critical solution decay with time, except for a single, exponentially
growing mode, whose initial amplitude can be fine-tuned to zero by seeking the threshold solution.
This idea has been successfully applied in several situations to predict scaling exponents, and
pertubative studies of the Einstein-Klein-Gordon critical solution have found only a single growing
mode [26, 27]. Our study of this system is presented in Chapter 3. For the most part, our results
are consistent with the conjectured universality of the critical solution. However, we do see some
indications that there may in fact be an additional unstable mode 2. If so, the growth rate of the
instability is small enough that it does not appreciably alter observed near-critical solutions at
early times; though at late times, the effect of the putative unstable mode is such that, tuning
closer to criticality, two black holes form along the axis instead of one (from slightly super-critical
initial data). On the other hand, certain families of initial data, with significant asymmetries, form
two black holes while still far enough away from the threshold that critical behavior is not observed
about a single center of symmetry, rather, two distinct, spherical-like critical solutions develop.
This can be thought of as arising from a “focusing” effect, whereby the initial distribution collapses
to two local centers. Therefore, it may be that the apparent instability we see in some cases is
actually arising from a small focusing effect.

Another class of axisymmetric spacetimes we would like study are those where black holes play a
significant role in the dynamics, including head-on black hole collisions, and interactions of matter
or gravitational waves with black holes. To this end, we need to deal with the singularities inside of
black holes, and we have chosen to use black hole excision [28] to obtain long-term, stable evolution
of these spacetimes. The details of excision are explained in Sections 1.5.3 and 2.2.6. At this stage,

2In terms of the spherical-harmonic decomposition used in [27], it appears as if an £ = 2 mode is unstable; in the
perturbative calculation such a mode was one with the slowest rate of decay.

CHAPTER 1. INTRODUCTION 3

we have not yet added excision to the AMR code, and the set of boundary conditions we apply
are inconsistent with some of the evolution equations which are not used in our finite difference
algorithm. Hence, in Chapter 4 we only present a few examples of spacetimes with excision, to
demonstrate the feasibility of our method. Before attempting to extract meaningful physics from
such scenarios, we will need to restrict the class of boundary conditions to achieve consistency.
Furthermore, AMR will be essential to obtain accurate results, in particular to study black hole
collisions and obtain good estimates of the emitted gravitational wave forms.

In Chapter 5, we conclude by mentioning a few of the extensions to the code that we hope to
incorporate in the not-too-distant future. These include additional matter fields, and support for
spacetimes with angular momentum.

In appendix A, we summarize the set of continuum equations we solve, and list the particular
finite difference stencils we employ in the numerical code. In appendix B, we describe a piece of
software that we have developed, called the Data- Vault (DV), that was specifically designed to help
develop AMR-based finite difference codes. The DV is a data repository with visualization facilities,
allowing us to analyze and view the kind of AMR grid-hierarchies our code produces. This tool has
been extremely valuable in developing the code, for to efficiently deal with instabilities (and bugs)
it is imperative to be able to “see” exactly what is happening at each stage in the algorithm.

1.0.1 Notation

We use a metric signature of — + ++. For tensor indices, we use the Einstein summation con-
vention, whereby repeated indices are summed over. Greek indices (a, 3,4, ...) are used with four-
dimensional (4D) tensors, lower-case Latin indices (a, b, c, ...) with three-dimensional (3D) tensors,
and upper-case Latin indices (A, B, C, ...) are used with two-dimensional (2D) tensors. In equations
where we project from an (n+1) to an n-dimensional manifold, we often mix the Latin and Greek
indices in the projection tensor, to denote the fact that the result is an intrinsically n-dimensional
object. 4D covariant derivatives are denoted by a semi-colon (;) or V, and 3D covariant deriva-
tives by either a vertical bar (|) or the operator D. Ordinary differentiation is often denoted by
a comma (,). We use L¢ to denote the Lie derivative [29] along a vector field £¢ (or £*). Square
brackets enclosing tensor indices denote anti-symmetrization of the set of indices, for example
£ia,5) = 3 (€a,8 — €8,a). Throughout this thesis we use units where Newton’s constant G and the
speed of light ¢ are set to 1.

1.1 The Field Equations of General Relativity

General relativity is Einstein’s theory of the geometric structure of space and time. This geometry
is conveniently encoded via the metric tensor g, , defined by

ds® = g, dztdz”, (1.1)

where ds is the infinitesimal distance measure between adjacent points in the spacetime, in a
direction given by the vector dz*. The contravariant form g** of the metric tensor is defined to be
the inverse of the covariant form g,,:

gu'yg’w = (spya (1-2)

where §,” is the Kronecker delta function. From this we can define the raising and lowering of
tensor indices via contraction with the metric tensor; for example

T, =T"9u- (1.3)

guv is required to be a symmetric tensor with vanishing covariant derivative, i.e. g,.,;y = 0. This
gives the following form for the metric connection I, (also called Christoffel symbols of the

CHAPTER 1. INTRODUCTION 4

second kind):

1
qu" - 5967 [9vy + Gy — Guviy] - (1.4)

Note that the F‘;,w do not obey the usual tensor transformation properties, and thus I' is strictly
not a tensor.

A geometric object describing curvature in the spacetime, and of relevance to the Einstein
equations, is the Riemann tensor, defined by

RIW’YJV(S = Voon — Voo » (1.5)

where V? is an arbitrary vector. Written out explicitly in terms of the connection, the Riemann
tensor is
6 _ 19 6 6 6
Ruw =T pysvy T r vy T FPM’YF pv — FPV’YF (22 (1-6)

A contraction over the second and fourth indices of the Riemann tensor gives the Ricci tensor
Ry, = Ruy", (1.7)
a further contraction of which gives the Ricci scalar
R=R,". (1.8)

The FEinstein tensor is defined as 1
Guu = R/.w - iRgpu- (19)

The FEinstein field equations describe the set of geometries that are believed to be relevant in nature,

and are
&G

G;U/: P T;u/; (110)

where for the moment we have restored conventional units, so that G is Newton’s constant and ¢
is the speed of light in vacuum. T),, is the stress-energy-momentum tensor (or stress-energy tensor
for short) of matter fields existing in the spacetime. Thus matter is responsible for the geometric
structure of spacetime. In turn, the geometry of spacetime is “experienced” by matter as the force
of gravity. The latter statement is in part quantified by the geodesic hypothesis®, stating that
point-like objects with infinitesimal mass travel along geodesics of the underlying geometry. A
geodesic is a curve z*(\) of extremal length in the spacetime, with A being the so called affine
parameter, labelling distance along the curve. The requirement that z®()\) be a curve of extremal
length results in the following set of differential equations:

u® guf =0, (1.11)

where u®(\) = dx®(\)/dA is the vector tangent to the curve.

The particular value, 87G/c®, of the constant appearing on the right hand side of (1.10) arises
by demanding consistency between Einstein and Newton’s theories of gravity in the appropriate
limits. One such limit is the region far outside a central, compact body of matter, where certain
geodesics of the spacetime will coincide with Keplarian orbits about the central object. Requiring
the orbital period to match in the two theories fixes the value of the constant.

Note that the field equations (1.10) are compatible with conservation of stress energy—T*",, =
G*¥., = 0. This property of the Einstein tensor can be derived as a consequence of the Bianchi
identities satisfied by the Riemann tensor: V[, R, 5" = 0.

3The geodesic hypothesis can be “derived” for simple forms of matter, such as pressureless dust, from the
conservation of stress-energy.

CHAPTER 1. INTRODUCTION 5

1.2 Gravitational Collapse

Some of the more intriguing solutions of Einstein’s equations are spacetimes containing black holes.
A black hole is a region of spacetime that has undergone gravitational collapse, implying that the
“force” of gravity has become so strong that no object can escape from it. From a geometric point
of view, a black hole is a region of spacetime from which no causal (timelike or null) curves leave,
though such curves can enter the black hole from the outside. The boundary of the region that
cannot causally influence the exterior is called the event horizon. It is believed that black holes are
rather common astrophysical objects— most galaxies are thought to contain supermassive black
holes [2] (on the order of 10° to 10° solar masses), and a certain fraction of stars with initial masses
on the order of 10 or more solar masses are expected to collapse to black holes in the final stages
of their evolution [3].

The relevant length-scale in gravitational collapse is the Schwarzschild radius, Rs, which is the
location of the event horizon in the Schwarzschild metric, the solution to the vacuum field equations
describing a non-rotating black hole:

om\ A .
ds? = — (1 - 27m> dt? + (1 - Tm) dr? + r2d6? + 12 sin? 0dg?. (1.12)

Here m is the mass of the black hole, and the Schwarzschild radius is at r = 2m, where the
coordinate system of (1.12) becomes singular. In general, for a black hole to form from a distribution
of matter, the matter must be compacted into a region on the order of its Schwarzschild radius.
The Schwarzschild radius for an object with the mass of the sun is roughly 1km.

Another important feature of black holes in classical general relativity is that, barring “unusual”
forms of matter®, spacetime singularities always form inside of black holes. A singularity is a
pathology in the geometric structure of the spacetime—for instance a point of infinite curvature, or a
point of geodesic incompleteness (where geodesics “terminate” in finite affine time). This latter form
of pathology was proven to always exist inside of black holes (the well-known singularity theorems
of Hawking and Penrose, see for example [29]), and analytic and numerical studies of gravitational
collapse suggest that curvature singularities are generic [30, 31]. Whether singularities can form
outside of event horizons in astrophysically relevant situations is still an open question. Penrose
hypothesized that an event horizon will always form to hide the singularity from distant observers
—the cosmic censorship hypothesis [32]. There are two versions of the hypothesis, weak cosmic
censorship and strong cosmic censorship. Weak cosmic censorship states that generic singularities
are always contained inside of black holes. Strong cosmic censorship further states than no generic
time-like singularities ever occur, so that (for instance) an observer falling into a black hole will never
see the singularity before reaching it. As of yet no convincing counter examples have been found
to either form of cosmic censorship, though several “non-generic” examples of naked singularity
formation are known [33, 34].

Cosmic censorship is also an important issue for numerical simulations of black hole spacetimes.
The causal nature of the black hole allows us to “excise” the interior singularities in a simulation
[28] (we will discuss this in more detail in Sections 1.5.3 and 2.2.6). For then, as long as either
version of cosmic censorship holds and singularities do not form outside of the event horizon, the
solution that one obtains there will not be affected by our lack of knowledge of what happens in
the vicinity of the singularities®.

4Matter violating the so-called energy conditions [1], for example matter with negative pressure, or matter that
exerts pressure without having energy density, etc...

5Presumably an eventual theory of quantum gravity will provide a sensible description of singularities, but until
then any other method one might devise to “resolve” singularities for numerical purposes would be purely ad-hoc,
and would give physically meaningless answers to the causal future of the singularity.

CHAPTER 1. INTRODUCTION 6

1.3 Critical Phenomena

Interesting and unexpected behavior occurs in self-gravitating systems at the threshold of black hole
formation. This behavior, discovered by Choptuik in 1993 [4], was dubbed critical phenomena, in
analogy to similar laws governing certain properties of statistical mechanical systems in phase
transformations. Before describing the particular set of phenomena that occurs in gravitational
collapse, it will be helpful to clarify the notion of the “threshold of formation” with the following
canonical experiment.

Consider a smooth, compact distribution of scalar field energy at t = ¢y, with an adjustable
amplitude labelled by a parameter p. If we evolve this system, there are two possible end states
as t — oo: for small initial amplitudes the scalar field will disperse to infinity, while sufficiently
large amplitudes will induce gravitational collapse, leaving behind a black hole (with some of the
scalar field escaping to infinity). This implies that there is a critical amplitude, corresponding to
p = p*, such that for p > p* black holes do form, while for p < p* all of the scalar field escapes to
infinity. p = p* is the threshold of black hole formation, and it is in this vicinity of phase space
that critical phenomena—universality, scale invariance and power low scaling—is seen. We will
describe each of these phenomena in more detail below. Note, however, that the specific kind of
critical behavior observed depends upon the matter model. Here, we focus on the massless scalar
field—see [35, 36] for review articles discussing the majority of systems studied to date, including
in [35] a more extensive treatment of the massless scalar field than we are giving here.

One of the more remarkable aspects of a critical solution—the resulting geometry and matter
field distribution in the limit as p — p* in the spacetime vicinity of the collapse— is its apparent
universal nature. In other words, regardless of which particular one parameter (p) family of initial
data is used to interpolate between dispersal and black hole formation®, the resulting solution in
the limit as p — p* is, up to certain trivial rescalings, unique. Moreover, in the vicinity of the
critical solution in phase space (|p — p*| < 1), the deviation in the solution away from the critical
one is uniquely specified by the number p — p* (we explain this in more detail below).

Another of the features of the critical solution for the massless scalar field is that it is scale
invariant. Specifically, the solution is discretely self-similar. Define a scale-invariant variable z =
r/(—t) and a time variable 7 = — In(—t). Here r is a Schwarzschild-like radial coordinate (1.12) and
t < 0 is proper time as measured by a central observer, translated so that t = 0 coincides with the
so-called accumulation point, which is the time when all length scales x within the solution collapse
to zero proper length at r = 0. Then the discretely self-similar critical solution for a given variable
(the scalar field, for instance) is a function Z*(x,7) that is periodic in 7: Z*(z,7) = Z*(z,7 + A).
In (r,t) coordinates, one would see Z* as a function oscillating in time, but with frequency diverging
as 1/t, and after each cycle, which is shorter that the previous one by a factor of e, the shape of
the function repeats on a scale that is smaller by a factor e®. A is called the echoing exponent.

The critical solution is scale invariant, and thus has no intrinsic length scale. Near-critical
solutions break this scale-invariance, introducing a length scale L into the solution that takes on
the following form:

Lx(p—p"). (1.13)

For example, in a super-critical solution with p > p* the mass M of the resulting black hole scales
as
M x (p—p*)". (1.14)

Similarly, in a sub-critical solution with p < p* the maximum value attained by the Ricci scalar
(which has a dimension of 1/length?) during evolution is [112]

Rpaz o (p* —p) 2. (1.15)

This is the so called power law scaling behavior, and + is called the scaling exponent. The scaling

6As long as the one parameter family is smooth in the vicinity of p*.

CHAPTER 1. INTRODUCTION 7

exponent is universal, although the constant of proportionality depends on the family of initial
data, as well as the particular length scale considered.

From a dynamical systems point of view, the universal behavior can be explained if the critical
solution is a one-mode unstable solution [24, 25]. This means that if one looks at linear perturbations
about the critical solution Z*, and expands these perturbations as a sum of eigenfunctions with
time dependence of the form e*", then only a single eigenfunction will have A < 0 and hence grow
with time; the rest all decay with time. More specifically, suppose we have a near-critical solution
with the following expansion:

Z(.Z',T;p) = Z*('Z':T;p*) + ZCZ@ _p*)e)\i‘rfi(x/r)) (116)

where §; is an eigenfunction periodic in 7, and each C;(p — p*) has the expansion C;(p — p*) =
Cio-(p—p*) +O(p—p*)? (so that p = p* gives the critical solution). Let us label the growing mode
Ao, and suppose that at a time 7 = 79 we specify initial data with some arbitrary perturbation, i.e.,
all C; are in general non-zero. Then, as we evolve with time, all of the perturbations associated
with decaying modes will eventually die out, leaving the following approximate solution at (say)
T=T1.

Z(z,m1;p) — Z*(z,7139*) = Coo - (p — p*)e™ ™ &o (2, 70), (1.17)

where we have assumed that p — p* is small. This explains the universality of the critical and
near-critical solutions. Furthermore, we can obtain an explicit relationship between Ay and v using
the following argument. The perturbed critical solution posited in (1.16) will persist in time until
the right hand side of (1.17) has grown to a value of order unity, at say 7 = 7. After that, one
would expect the non-linear terms to push the solution to either dispersal or black hole formation.
However, at 7 = 71, the only length-scale that has developed in the solution is 7, and hence this
is the only scale that the subsequent solution could inherit. This gives

Coo(p—p)e* ™ &o(z, 1) 1 = (1.18)
Aoz = In(p — p*) + const, = (1.19)
1, o In(p — p*) /20, (1.20)

Comparing the last line above with (1.13), we get that v = 1/Ag. This relationship has been verified
in perturbation theory in [26, 27]. Note however, that we have been a little bit sloppy in the above
derivation; in particular, the fact that & (z, 7) is periodic in 7 introduces a secondary scale into the
problem, whose value depends upon when in the cycle of &’s oscillation the amplitude of the mode
grows above unity. This is a minor effect, but nevertheless introduces a small, periodic “wiggle”
(with period A/(27)) on top of the linear relationship nln(L) = v(p — p*), for a length scale of L™
[26, 37].

1.4 Black Hole Collisions and Gravitational Waves

Another of the intriguing predictions of general relativity is the existence of gravitational waves—
geometric distortions of spacetime traveling at the speed of light. Currently a slew of gravitational
wave observatories are starting to gather data or being constructed, including LIGO, VIRGO, GEO,
TAMA and AIGO [5, 6,7, 8, 9]. One of the most promising sources of gravitational radiation for the
first generation of detectors is the inspiral and merger of compact objects, namely black holes and
neutron stars. This thesis details work with an axisymmetric code, that can only model head-on
collisions. Head-on collisions are not expected to occur frequently enough (if ever) in astrophysical
situations to be of relevance to gravitational wave detection; however, due to the complexity of
solving the field equations in 3D, it will still be of benefit to use a 2D code as a testing ground for

CHAPTER 1. INTRODUCTION 8

issues such as adaptive mesh refinement, black hole excision, and code-parallelization. Also, some
interesting new physics may emerge from the calculation. In the remainder of this section we give
a brief overview of some properties of gravitational waves in general relativity.

In linearized theory, perturbing about Minkowski spacetime, one can identify two linearly in-
dependent polarizations of gravitational waves. These are the so called cross (x) and plus (+)
polarizations, and represent geometric distortions transverse to the direction of propagation. The
x polarization is equivalent to the + polarization after a 45° rotation about the propagation vec-
tor, and vice-versa. The distortion in the spacetime geometry can be visualized by considering
the effect of the wave passing a circular ring of dust particles, initially at rest relative to each
other, and positioned in the plane orthogonal to the propagation vector: the shape of the ring
will cycle through the patterns circle — oblate ellipse — circle — prolate ellipse — circle, with
the semi-major axis of the oblate and prolate ellipses oriented at 90° relative to one another. All
gravitational wave detectors work by trying to measure this oscillatory change in distance induced
by the passage of a wave.

In astrophysical settings, gravitational waves are produced by the motion of compact distri-
butions of matter/energy. In terms of a multipole decomposition of the source, the leading order
contribution to emitted waves is proportional to a time varying quadrupole moment 7. Conserva-
tion of the energy and linear momentum of a stationary, isolated source implies that there cannot
be any monopole or dipole radiation. The loss of energy due to the radiation of gravitational waves
has implicitly been measured in the Hulse-Taylor binary pulsar [38], as the inferred energy loss due
to changes in the orbital period of the system is consistent with the quadrupole formula of general
relativity.

One useful characterization of the gravitational wave structure of spacetime comes from the
Newman-Penrose (NP) formalism [39]. The NP formalism is a form of tetrad calculus, wherein the
metric, Christoffel symbols and Riemann tensor are projected onto a complex, null tetrad. The
null tetrad consists of 2 real null vectors, ## and n*, a complex null vector m#, and its conjugate
m#*. The normalization of these vectors is chosen as follows: ¢#n, = —1 and m#m, = 1. The
particular choice of null tetrad is application-specific. In our case, we want to look at the radiation
coming from an isolated source, at large distances r from it. Thus, a sensible choice of tetrad is
to let [# and n* correspond to outgoing and ingoing radial null vectors respectively, while the two
complex null vectors are created from two, orthogonal, unit spacelike vectors a* and b* that are
tangent to the null vectors, via m#* = (1/v/2)(a* — ib").

Of particular interest to the study of gravitational waves is the decomposition of the Weyl tensor
into tetrad components. The Weyl tensor Cyg+s is defined as the trace free part of the Riemann
tensor, and is given by

Rapys = Capys — %(QaéRﬂv = 9avRss + 9gyRas — 95 Ray) — (R/6)(9ar98s — 9asgsy)- (1.21)
In other words, the Riemann tensor can be decomposed as the above combination of the Ricci
tensor, Ricci scalar and Weyl tensor. In vacuum, where the Ricci tensor and scalar are both
zero by Einstein’s equations (1.10), the Weyl and Riemann tensors are equivalent. There are ten
independent components of the Weyl tensor, which can be isolated via contraction with appropriate
sets of null tetrads. The result is five complex scalars, the Newman-Penrose scalars, denoted by

"More specifically, the metric perturbations far from a slowly-moving source are proportional to the second time
derivative of the trace-free quadrupole momentum tensor of the source, and the energy carried off by these waves is
proportional to the square of the third time derivative of the same tensor—see for example Wald [29].

CHAPTER 1. INTRODUCTION 9

T, ..., Uy
Ty, = — a/g,y(;namﬂn'*m‘s,
U, = - ag,ygnaﬁ'grﬂm‘s,
Ty = —Coprem®Pnim?,
T3 = —Coprem®Pne?,
Ty = —Coprem®Pine0 (1.22)

One of the interesting properties of these NP scalars is the “peeling” property [40] in an asymp-
totically flat space: with no radiation coming in from infinity, the leading order r behavior of the
NP scalars are

Ty = 0@,

U= o),

T, = 0@ ?),

T; = O(r™?) and

v, = O@r). (1.23)

Here r is the distance from some region of strong-field gravity, and the tetrad used is as described
earlier: £# and n* are tangent to radially outgoing and ingoing null vectors respectively. Equations
(1.23) show that in the vicinity of the source, all of the scalars are relevant in describing the
gravitational wave content of the spacetime; as one moves away from the source, one-by-one the
scalars become irrelevant (they “peel” off). The only NP scalar that dies off sufficiently slowly
to be relevant at infinity, and hence carry gravitational wave information, is ¥4. In axisymmetry
¥, is real; a non-zero imaginary part would be associated with angular momentum carried by the
waves, which requires ¢ (the azimuthal angle) dependence [41].

The energy flux carried away by the waves can be calculated at large distances from the source

using [42]
2

t
aM = lim 1 [/ \I'4dt] r2ds), (1.24)
dt r—oo 4xr r=const 0

where M is the ADM mass [43] of the spacetime, dQ2 denotes integration over the unit sphere, and
we assume the outgoing radiation is zero before ¢t = 0.

1.5 Numerical Solution of the Field Equations

To numerically solve the Einstein field equations (1.10) requires, in general, that one solve a set of
ten, second order, coupled, quasi-linear partial differential equations (PDEs). To arrive at equations
amenable to numerical solution, one must first choose a particular coordinate system. Components
of the metric tensor g,, are then the unknown functions that we wish to solve for. By looking at
the definition of the Einstein tensor in terms of contractions of the Riemann tensor (1.9), which
is defined in terms of products of Christoffel symbols and their first derivatives (1.6), which in
turn are sums of products of metric components and their first derivatives(1.4), one can see how
the Einstein equations reduce to a set of 2™¢ order PDE’s for the metric functions. Additional
equations governing the evolution of the given set of matter fields forming the stress-energy tensor
must be supplied.

One of the more common methods of specifying the set of metric functions is the ADM, or 3+1
formalism [22], discussed in some detail in the next subsection. In this formalism, the coordinate

CHAPTER 1. INTRODUCTION 10

system is chosen to have a timelike coordinate ¢, and three spatial coordinates (hence 3+ 1). Here,
initial data is provided on the (say) ¢t = 0 slice of the spacetime, and the rest of the solution is then
obtained by evolving in ¢. The initial data at ¢ = 0, consisting of the values of the metric functions
and their first time derivatives, cannot be specified arbitrarily. Four of the Einstein equations,
when written in 3 + 1 form, only involve the initial data. These are the constraint equations, while
the remaining six Einstein equations are called evolution equations. In theory, we only need to solve
the constraint equations at the initial time, as the evolution equations preserve the constraints, by
virtue of the contracted Bianchi identities (however, nothing prevents us from solving some or all
of the constraint equations on each time slice, in lieu of solving an equivalent number of evolution
equations). This implies that we only have six independent PDEs, to be solved for six metric
functions. The remaining four metric functions can therefore be specified arbitrarily (to within the
requirement that ¢ remain timelike) throughout the evolution. This encapsulates the coordinate
freedom that one has in general relativity, and is discussed in more detail in Section 1.5.2.

We use finite difference methods to solve the set of PDEs numerically: the computational
domain is divided into a grid (or mesh) of points, and the differential equations are converted into
a set of finite difference equations at each point on the grid. An overview of the concepts and basic
techniques used to solve finite difference equations is given in Section 1.5.4. In Section 1.5.5, we
introduce adaptive mesh refinement (AMR), which is a technique used to give sufficient (but not
excessive) grid resolution to adequately resolve functions everywhere in the computational domain.
Section 1.5.6 describes the multigrid method, which is used to efficiently solve elliptic equations.

A problem, that to some extent is unique to numerical solutions of the field equations, is how to
deal with singularities that may arise within the spacetime. Computers cannot represent infinities,
and if they do occur in a calculation and are not dealt with, the code will “crash”. The two
broad classes of singularities that could occur in the numerical solution of Einstein’s equations are
coordinate “pathologies” and spacetime singularities. A coordinate pathology is some aspect of
the chosen coordinate system that could be problematic for a numerical code, including (but not
restricted to) an actual singularity of the coordinate system. A benign example of this is the axis
in spherical-polar type coordinates, which can be dealt with by applying appropriate regularity
conditions to functions in the vicinity of the axis. Other coordinate pathologies could develop
during the evolution of the spacetime, and may not be easy to deal with numerically. In principle,
one could change coordinates within the offending region of the computational domain, resulting
in a framework similar to the multiple coordinate patches that are often used in analytic work to
obtain sensible results in all regions of interest. However, in practice this would be quite difficult to
implement numerically, and instead we opt to choose a single coordinate prescription at the outset
that we hope will cover a sufficient region of the spacetime®.

Spacetime, or physical singularities, cannot be removed via a coordinate transformation. Fur-
thermore, as discussed in Section 1.2, they do occur (at the very least) inside of black holes, and
must be dealt with in any code simulating black holes. As was also mentioned in Section 1.2, the
causal structure of black hole spacetimes allows us to excise the region of the black hole containing
the singularity from the numerical grid (as long as cosmic censorship holds). The technique is
called black hole excision, and will be described in Section 1.5.3.

1.5.1 The ADM formalism

In this section we describe the ADM (Arnowitt-Deser-Misner) space-plus-time decomposition of
the metric, and the resulting field equations.

We begin by slicing the spacetime into a family of ¢ = const., spacelike hypersurfaces—see
Figure 1.1. The unit timelike one-form, dual to the hypersurface normal vector, is defined as

ng = —aVyt, n%ng = —1. (1.25)

8Thornburg is currently working on a code that incorporates multiple patches, to evolve a black hole spacetime
[76].

CHAPTER 1. INTRODUCTION 11

Figure 1.1: A schematic representation of the ADM space+time decomposition. X(t) is a space-
like hypersurface with unit timelike normal n®. The vector (%) * = an®+ B denotes
the direction of constant coordinate position z* within the sequence of hypersurfaces,
and therefore represents the flow of coordinate time. « is called the lapse function,
and % the shift vector.

a is called the lapse function®, and embodies the coordinate freedom we have to rescale our time
coordinate t. We will use coordinates *,a € 0..3, with 2° = ¢, and z%,a € 1..3 being the
remaining spacelike coordinates within the ¢ = const. hypersurface. Using n®, we can define a
projection tensor hqg as follows:

hag = gag + nang. (1.26)

hap is called a projection tensor because it “projects” tensors of the four dimensional manifold with
metric gog, into tensors that are tangent to the three dimensional manifold ¢ = const. with metric
given by hgp, where a,b € 1..3. To see this, note from (1.25) and (1.26) that hagn® = hagn® =0,
and hqp(0/02%)*(0/0x°)P = gup. Furthermore, with the projection of a four dimensional tensor
defined as

1 Top.. % = b, 0Py o by Chs? . Top. 1 (1.27)

it is straightforward to verify that the contraction of any index of L T, % with n® gives zero

(a tensor satisfying this property is referred to as spatial), and hence from (1.26) one can raise and
lower indices of L T,p..°% with either hap or gos. The final piece of the decomposition of the
4-metric g, g, in addition to the lapse function o and 3-metric hgp, is the shift vector 5. The shift
vector is a spatial vector (so 3%n, = 0), and embodies the 3 degrees of coordinate freedom we have
within the spacelike hypersurfaces, as shown in Figure 1.1. Explicitly, the decomposition is

ds? = gapde®dz”
= —a?dt’ + hep (dz® + p°dt) (da® + Bdt) (1.28)

The remainder of the ADM formalism involves writing the Einstein field equations (1.10) in
terms of spatial tensors and their time derivatives. To this end, we use the extrinsic curvature

9Note that we the symbol a to denote the lapse function, as well as label tensor indices; it should be clear from
the position of the symbol which a we are referring to.

CHAPTER 1. INTRODUCTION 12

tensor of the ¢ = const. hypersurface, defined as
Ky = _haahbﬁna;ﬂ

1
_ —ihaahbﬂ»cngaﬁ- (1.29)

Note that K, is a symmetric spatial tensor. Using the definition of the Lie derivative [29], we can
(after some manipulation) write the above equation in the form of an evolution equation for hgp:

6hab
ot

= —2aKy + Ba\b + /Bb|a7 (130)

where the vertical bar | denotes the covariant derivative operator intrinsic to the spatial hypersur-
face:

[dia = ha®[Lia (1.31)

The projections of the stress-energy tensor T,z into components tangent and normal to the hyper-
surface are defined as follows:

p = Tasn®nP, (1.32)
Sap = Taph®ahPy, (1.33)
Jo. = —Tagh®.nP. (1.34)

p is the energy density, J, the momentum, and S,; the spatial stresses of matter as seen by
an observer traveling along n®*. The projection of the Einstein tensor into similar components
can be obtained by using the Ricci identity (1.5) applied to n®, and using the Gauss-Codazzi
embedding equations for relating the projected four dimensional Riemann tensor L Rgp.q to the
three dimensional Riemann tensor ®) Rgp.q of the geometry intrinsic to the ¢ = const. hypersurface.
This calculation is for the most part straight forward, but rather lengthy, and so we will refer the
interested reader to [43, 44] for details. The result, substituted into the Einstein equations, and
utilizing the definitions (1.32-1.34), are the Hamiltonian constraint

GR 4+ K? — K3, K® = 16mp, (1.35)

the Momentum constraints
K, |y — Kjo = 87Ja, (1.36)

a

and evolution equations for the extrinsic curvature

0K g

1
o = (<3>Ra,, + KKab) — 20K, K% — 8na (Sab + har(p = S))

_a\ab+ﬁc|ach+ﬂc|cha+5cKab|c- (1.37)

In the above, K, S and)R are the traces of K, Sqp and)R, respectively.

1.5.2 Coordinate and Slicing Conditions

In the ADM formalism, the four degrees of coordinate freedom we have in general relativity are
most conveniently related to the lapse function a and three shift vector components 3. Often,
the choice of « is referred to as the slicing condition, and the choice of 32 as the spatial coordinate
condition. In this section we briefly describe some of the more common conditions that have been
used in numerical simulations in the past (see [44] and [48] for review articles describing these, and
other conditions).

CHAPTER 1. INTRODUCTION 13

Perhaps the simplest coordinate choice is geodesic coordinates, where the lapse is set to one,
and all of the shift vector components are set to zero. In that case, * = const. observers follow
geodesics of the spacetime. For long term numerical evolution this is not a very useful property to
have in most cases, as gravity, or even non-trivial curvature on the initial slice, will cause geodesics
to focus to caustics somewhere within the spacetime. Thus, the coordinate system will become
singular there, as it is tied to the geodesics.

A slicing condition that is frequently used in 3+ 1 numerical simulations is mazimal slicing [44],

where one enforces the conditions
K=0 — =0. 1.38
’ Ot ()

From (1.37), these conditions result in the following elliptic equation for the lapse:
1
Via=a |KK® + 3(p+9) (1.39)

To obtain some understanding of the properties of this condition, notice from (1.29) that K mea-
sures (minus) the local expansion of the vector field n®. Equivalently, — K is equal to the fractional
change of the spatial volume element normal to the hypersurface: K = —(81n+v/h/dz*)n®. This
also implies that a spacelike slice with K = 0 is the slice with maximum total volume, within a re-
gion of spacetime inside a given, closed, spacelike boundary. Another property of maximal slicing is
that it is singularity avoiding. The local volume element approaching a spacetime singularity often
diverges, or goes to zero; forcing the volume element to remain fixed approaching such a singularity
has the effect of “freezing” (a — 0) the slices in the vicinity of the singularity. A problem with
this kind of singularity avoidance is that the ¢ = const. slices become severely distorted, resulting
in steep gradients of metric functions that eventually will be as fatal to a numerical code as the
curvature singularity.

The minimal strain shift, minimal distortion shift and minimal strain conditions are similar to
maximal slicing in spirit, where some aspect of a congruence of timelike vectors is minimized over
the spatial slices [45, 46]. The minimal strain/distortion shift conditions minimize the strain/stress
(trace free part of the strain) of the vector field (0/0t), by variation over all possible choices
of the shift vector f*. This results in three elliptic equations, one for each component of the
shift vector. The minimal strain shift conditions can be derived from the action ~ h%hbdhgh.q,
where h.q denotes differentiation with respect to t. The minimal strain conditions use the same
action, though the variation is performed over all values of both the shift vector components and
lapse function. This results in an algebraic condition for the lapse, in addition to the same elliptic
conditions as before for the shift-vector components. The motivation behind these conditions is
an attempt to reduce distortions of the coordinate system that may arise in highly dynamical
spacetimes, for example in a binary black hole system. In the time of interest prior to merger,
one would ideally like to follow the holes for several thousand orbits. A coordinate system that
is co-rotating with the holes may be desirable (at least early on in the inspiral phase where the
shape of the orbits are not expected to change rapidly), as this would eliminate a significant part
of the non-radiative dynamics of the metric functions. The minimal strain condition may be able
to provide such a co-rotating coordinate system!©.

In harmonic coordinates, the coordinate system is chosen so that one or more coordinates z*
satisfy a curved-space wave equation, with source function H*:

VoVt = HP. (1.40)

10Recent simulations of the merger of two relativistic clusters of particles by Shibata [47] with an approzimate
minimal distortion (AMD) condition showed promising results, in that relatively long-term, stable evolution was
achieved in cases that did not result in black hole formation. The AMD condition is similar to the minimal distortion
shift condition mentioned here, though the resulting elliptic equations are simplified at the expense of “not exactly”
minimizing the strain of (9/9t)*.

CHAPTER 1. INTRODUCTION 14

Note that z* is considered a scalar in the above equation, despite the tensor-like index. If all
coordinates are chosen to satisfy this condition, then the second-derivative terms of the metric
in Einstein’s equations take the form of scalar wave equations for each metric component [29].
This could be a desirable property to build a numerical code around, as solving a system of wave
equations, particularly in a setting with adaptive mesh refinement, is in principle straight forward.
Another benefit of the harmonic condition, applied to ¢, is that in some cases the resulting slices
have singularity avoidance properties, similar to maximal slicing [49]. A possible disadvantage
of using the harmonic conditions is that coordinate singularities tend to form when using them
[50]; however, it may be possible to cure these problems which appropriate choices for the source
functions H* [51]. In terms of the ADM formalism, one can write down expressions for the lapse and
shift vector that would enforce the harmonic coordinate condition (see for instance [51]); however,
directly using the variables of the ADM formalism might not be desirable if one wants to fully
exploit the wave-like nature of the field equations.

Often, coordinates are chosen to simplify the form of the spatial metric hgp, to simplify or
alter the character of the resulting constraint or evolution equations, or to give metric variables
certain properties. For example, if we write the spatial metric as a conformal metric h,p times
some conformal factor ¢, i.e. hgp = ¥™haep, and at the initial time (or possibly for all time in a
symmetry-reduced spacetime, such as spherical symmetry) we choose hap to be a flat metric, then
one obtains an elliptic constraint equation for ¢ [44]. Another example is to choose coordinates
that are directly related to radiative variables in the asymptotically flat regions of the spacetime,
to simplify the analysis of gravitational waves produces by sources in the interior [52].

1.5.3 Black Hole Excision

As mentioned in Section 1.2, black hole spacetimes contain curvature singularities somewhere inside
of the event horizons, yet nowhere outside if cosmic censorship holds. These singularities need to
be avoided in a numerical simulation, and the technique we have adopted in our code to do so is
black hole excision (or simply excision).

The idea behind excision is as follows [28]. The defining property of a black hole is its event
horizon, a one-way causal boundary that disconnects the exterior from any happenings in the
interior. Therefore, we should be able to “remove”, or excise, the interior from the computational
domain, without affecting the physics of interest outside the black hole.

In terms of solving a set of differential equations, “removing” a piece of the domain requires
setting appropriate boundary conditions on the surface of the region that is removed. For hyperbolic
equations that have physical characteristic speeds, all of the characteristics of the equation will be
directed into the excision boundary. Hence, boundary conditions are effectively not needed—one
can simply employ “upwind” finite difference stencils in the corresponding difference equations
at the excision surface (see Sections 1.5.4 and A.2 for more details on finite differencing and the
particular difference stencils we use in our code, respectively). Various upwind-style difference
techniques have been employed by several authors in the past [53, 54, 55, 56, 57, 58, 59, 60, 61, 62].
For elliptic or algebraic equations representing coordinate degrees of freedom (such as for the lapse
and shift in general), one can in principle specify arbitrary conditions on the excision surface,
as long as these conditions are consistent with the coordinate choices, regularity, etc. Desirable
features for such conditions include being able to control the motion and/or coordinate size of the
holes, and ensuring that the excision boundary does not move outside of the black hole during
evolution.

Apparent Horizons

In practice, one excises a region within the apparent horizon, which is the outermost trapped
surface on a given spacetime slice. A trapped surface is a two-sphere from which all families of
inward and outward directed null curves, emanating from the surface, have negative expansion. If

CHAPTER 1. INTRODUCTION 15

cosmic censorship holds, the apparent horizon is always inside the event horizon [1]. The reason
one uses the apparent horizon, rather that the event horizon to excise, is that the position of the
apparent horizon is a local property of a given slice!'. An event horizon, in contrast, is globally
defined, and in general cannot be found in an evolution until the entire spacetime exterior to
the apparent horizon has been solved for (or at least until the spacetime has settled down to a
stationary solution).

To find an equation that can be solved to give the position of the apparent horizon, using
variables of the ADM formalism, we proceed as follows. Consider a family of hypersurfaces,
f(t,xz*) = R. We want to calculate the null expansion 1 normal to this surface, at a t = tg
slice of the spacetime. 6 is the outward null expansion, §_ the inward, and R is a constant
labelling each member of the family. The unit spatial vector s® normal to f(tg,z?) is

a haﬂ f7ﬁ

NGO

Using s* and the ¢t = o hypersurface normal vector n®, we can construct future-pointing outgoing(+)
and ingoing(—) null vectors normal to f(tg,z%) = R:

(1.41)

T =n"+£s" (1.42)

The normalization of the null vectors is (arbitrarily) ¢3¢ , = —2. The expansion is then the
divergence of £% projected onto the hypersurface f(to,z%):

0: = (h*F — s%5%) Vliq. (1.43)

Using the definition of the extrinsic curvature K, and substituting (1.42) into (1.43), we arrive
at the standard form for the null expansion, in terms of ADM variables:

0r = s*s" Ko £ 5%, — K. (1.44)

Note that because the normalization of the null vectors is arbitrary, so (to some extent) is that
of the expansion. The above normalization is chosen so that 61 measures the fractional rate of
change of area relative to a normal observer’s (moving along n®) time.

To find the apparent horizon on a given slice, we must find the outermost surface satisfying
0+ = 0in (1.44). There are several ways of attempting to solve equation for 8, = 0 (1.44) (for
some examples see [65, 66, 67])—see Section 2.2.5 for a description of the particular method that
we have implemented in our code.

1.5.4 Solution of Equations via Finite Difference Techniques

In this section we introduce some of the basic terminology and concepts in solving partial differential
equations using finite difference techniques.

Discretization of a PDE

Denote a PDE by the differential operator L acting on a function u (or in general, a vector of
functions), with possible “source” terms f, as

Lu=f (1.45)

1Which can also be a disadvantage, as slices of a spacetime containing an event horizon may not always have an
apparent horizon [63],[64].

CHAPTER 1. INTRODUCTION 16

To illustrate some of the concepts in this section, we will use the one dimensional wave equation
as an example, for which L is

0? 0?

o2 02’
Boundary conditions must also be supplied to complete the specification of a system of PDEs.
To solve (1.45), augmented with boundary conditions, using finite difference techniques, we first
discretize the problem. This involves representing continuum functions, such as u, on a discrete
grid (or mesh) of points, and replacing differential operators acting on continuum functions by
finite difference operators that act on discrete grid functions. We will restrict attention here to
uniform discretizations, where the coordinate spacing between gridpoints at a given time is h, and
the spacing between time levels at a given grid location is Ah, where both h and A are constants.
We can then denote the discretized differential operator by L"*, the discretized grid functions by
u® and f", and hence the resulting system of finite difference equations (FDEs) corresponding to
(1.45) by

(1.46)

Lhyh = fh. (1.47)

On the computer, we solve this set of FDEs for the grid function ", and, if implement “correctly”,
in the limit as h — 0 the solution u" obtained will tend to the continuum solution u. Before we
discuss this desired feature of a solution of FDEs in more detail, as well as describe how to convert
differential operators to finite difference (FD) operators, we introduce a few related definitions.

Basic Definitions and Concepts

The solution error " is defined as
el =u —uh, (1.48)

and is the difference between the continuum and finite difference solutions, evaluated at grid lo-
cations. Note that we assume f = f" at grid locations, i.e. there is no error in discretizing any
source function. A related quantity is the truncation error ":

h = L' — f, (1.49)

which is a measure of the error in replacing the continuum operator L with the discrete operator
L". A finite difference solution u” is said to converge to the continuum solution w, if limp,_,o u* = u.
Similarly, the system of FDEs is called consistent if limj_,o 7" = 0.
All of these concepts are encapsulated in the hypothesized Richardson ezpansion [68] of the
continuum solution:
u=ul+ e h +eyh? +esh® + ... (1.50)

Here, e1,es,e€3,... are continuum functions that depend on ¢ and z?, but do not depend on the
discretization scale h. For certain simple PDEs and discretizations one can prove that a Richardson
expansion exists (for sufficiently smooth solutions), however, it is not possible to do so in general.
In practice, if one obtains a consistent, convergent solution to the FDEs, then one effectively has
a proof by construction that a Richardson expansion does exist for the given system.

The order of convergence n of a finite difference scheme is the lowest, non-vanishing power of h
in (1.50). Both the truncation error and solution error scale as h™ in the small h limit. In fact, by
substituting (1.50) into (1.48) and (1.49), we find that

™ = (L") h"™ +O(h"t)
= Lt +O(h™). (1.51)

In other words, the truncation error is, to leading order, equal to the difference operator acting
upon the solution error, and hence consistency implies convergence, and vice-versa, for systems

CHAPTER 1. INTRODUCTION 17

possessing a smooth Richardson expansion.

In most situations where we need to find a numerical solution, we do not know what the con-
tinuum solution u is (otherwise, why bother with the numerics). Thus we cannot directly compute
the truncation or solution errors using expressions (1.49) and (1.48). However, the Richardson
expansion gives us the means to compute these quantities to leading order in h, by comparing
discrete solutions obtained with different discretization scales. Given two solutions u”t and u"?
of the FDEs, computed with discretization scales hy and hs respectively, approximations to the

solution error and truncation error can be obtained by calculating u?? — uf1:
hp\ !
el = (uh> — yh) (1 _ h,_i) + O(hm+Y pothy, (1.52)
1
N —1
h = phiyhe (1 - ﬁ) + O(hTT R3Th). (1.53)

Often one uses a set of discretization scales differing by factors of two, hy = h, he = 2h, hg = 4h,
Then a simple quantity to calculate, measuring the rate of convergence (or failure to converge in

an incorrect scheme) is

4h _ 2k

Y = 2"+ 0(h). (1.54)

u2h —

In practice, we compute the £ norm of this quantity to obtain a single number, as follows:

_ ||u4h _ u2h||2
[t =]y

Qu (1.55)

The order n of convergence of a FD scheme is governed by the order to which the finite difference
operators approximate the differential operators, as we now discuss.

Deriving Finite Difference Stencils

Finite difference operators can be derived via Taylor expansions. For simplicity we will restrict our
attention to the one dimensional case. Also, in the remainder of this section we only consider a
single discretization scale h, and so we will denote the discretized version of u by @, and the value
of 4 at grid location ¢ by 4.

In general, a finite difference operator D, acting upon @ at grid location i, is a weighted sum of
grid function values:

Di; = ...+ aj_oUj—o +a;_1U;—1 + a;4; + ai+1ﬁz~+1 + az-+21lz-+2 + .. (156)

where the a,, are constants. To determine what the differential operator D in (1.56) represents for
a given set of constants, or to derive new finite difference operators, we replace each 4; in (1.56)

CHAPTER 1. INTRODUCTION 18

by the continuum function u(z), Taylor expanded about z = z; (recalling that z; — z; = (j —i)h):

II III
Di;=.. + a;2 (u—l—u (—2h) + a(2h)% + 3 —(—2h)3 +)
II 5 uIII 3
+ (u+u + 5 —(=h)*+ ﬁ(_h) +)
+
II 9 uIII 3
+ aip1 (u-l—u o —(h)* + ?(h) + >
II III
+ aipo (u + u'((2h) 3 —(2h)® +) + ... (1.57)

In the above expression, u = u(x;), u' = du(z)/dz|y=s,, etc. We re-order the terms in (1.57) to

Di; = wu (+a;—2+a;i—1+a;+ a1 +aj42+)

+ u'h (oo — 2049 — @j—1 + aiy1 + 20542 + ...)
2

h .
+ u”g (o4 2%ai2 + ai—1 + aip1 + 2%ai40 + ...)
+ " w 234)) 230
u ? (—2°aj—2 —a;—1 + i1 + Q42 +)
b (1.58)

Defining the sum of coefficients in (1.58) multiplying the m** derivative of u by S,,, we can write
(1.58) as

2 h3
Dii; = uSp + u'hS; + U”%SQ + u”lys:g + ... (1.59)

From (1.59), we can see that for D to be an n!”* order accurate approximation to the m‘" derivative
of u (i.e. for Di; = d™u/dx™ + O(h™)), the following must hold: Sg = S1 = ... = Sp—1 = 0,
Sm = ml/h™, and Spmi1 = Smi2 = ... = Spem = 0. The reason that sums of terms up to Sptm
must be zero for an order n approximation, is that to satisfy S, = m!/h™, the coeflicients in S,
have to be of order h~™ in magnitude; since these coeflicients appear in all of the sums, the order
of sum Sy becomes h*~™. Conversely, to derive an n* order accurate approximation to the mt"
derivative of u, we need to choose a set of aj to satisfy these conditions, giving a system of n +m
linear equations for the coefficients. Thus, to obtain a unique solution, one must (in general) have
exactly n + m non-zero coefficients in the sum (1.56).

Here are several examples of common finite difference operators, including the leading order

CHAPTER 1. INTRODUCTION 19

truncation error term:

“2+12;h“z—1 = W'+ u’”%z ¥ .. (1.60)

—Uit2 + ;'Zi—i—l —34 um};_Q T (1.61)

3ii — 412;; tldia u — u"'};—2 + . (1.62)

Uitz — 4ﬁz‘+22-}1; Tivy —4u; _ _ w4 um%z + .. (1.63)
4%—7%425@4—ﬁp3= _ w+um%4ﬂ“ (1.64)
Uip1 — thgz thi1 _ o'+ u”"% + ... (1.65)

Equations (1.60-1.64) are all second order accurate approximations to the first derivative of u; equa-
tion (1.65) is a second order accurate approximation to the second derivative of u. Equation(1.60)
is often called the leap frog, or centered first difference operator, and equations (1.61) and (1.62) are
called forward and backward first difference operators, respectively. Typically, forward and back-
ward difference operators are applied at grid boundaries, so that undefined points outside of the
grid are not referenced. Equations (1.63) and (1.64) are examples of truncation matched difference
operators; notice that (1.63) (a forward operator) and (1.64) (a backward operator) both have the
same truncation error, to leading order, as the leapfrog scheme (1.60). This is a desirable feature to
have in some instances, as it will help give a smooth truncation error to a finite difference equation
throughout the computational domain [60].

Given a set of finite difference approximations to derivatives, as in (1.60-1.65) above, it is a
simple task to convert a PDE (1.45) to a system of FDEs (1.47): replace all continuum functions
with grid functions, and all derivatives of continuum functions with finite difference operators acting
upon grid functions. Then, based upon the Taylor expansion expressions for difference operators
(1.59), it is not difficult to see that the order of convergence of a FD scheme will be equal to the
order of the lowest order FD operator used to form the system of FDEs.

As an example, we will convert the one dimensional wave equation Lu = 0, with L given by
(1.46), to finite difference form, using the operator (1.65) for both the space and time derivatives:

agtt —2ap +apt A, —207 +ap, 0 (1.66)
A2h2 h2 - -

and for simplicity we impose Dirichlet boundary conditions on u at the grid boundaries ¢ = 1 and
1= N:
=0, uany=0. (1.67)

In (1.66) we have introduced the notation 4 to denote the grid function 4 (with implied spatial
discretization scale h and temporal discretization scale Ah), evaluated at time level n and grid
location i. Thus, three time levels are utilized in this particular discretization scheme, and we
consider the values of @ at time level n + 1 to be the unknowns that must be solved for during
evolution. This is an example of an explicit scheme, for we can solve for the unknowns dn41,;
without reference to any of the other unknowns at time level n + 1:

artt =267 —al ™t + A2(aP, — 247 +ar) (1.68)

An equivalent description of an explicit scheme is that, for the system of equations (1.68) in matrix
form Au"*t! =b, A is diagonal. If A were not diagonal, the scheme would be called implicit.

CHAPTER 1. INTRODUCTION 20

Stability

A general requirement for an explicit update scheme is that A cannot be chosen arbitrarily, but
must satisfy the so-called Courant-Friedrichs-Lewy (CFL) condition, which for (1.68) is A < 1 [69]
(we discuss this in more detail in the next paragraph). This ties in with the notion of stability of
FD schemes (which applies to all schemes, implicit and explicit included). Roughly speaking, an
unstable FD difference scheme is one that admits solutions that grow faster than an exponential
of the form e**) where k is a constant [69]. Typically, such solutions do not satisfy the continuum
PDEs, and hence stability implies convergence, and vice versa. For linear, time-dependent PDEs,
a similar statement, known as the Lax-Richtmyer equivalence theorem, can be proven rigorously:
a consistent finite difference scheme for a partial differential equation for which the initial value
problem is well posed is convergent if and only if it is stable (see, for instance [69]). We cannot
prove this theorem for the system of PDEs arising from Einstein’s field equations, however, we will
assume that a similar result does hold in our case. This implies that one of the keys to obtaining
valid results from a numerical code is to eliminate the instabilities. There are numerous factors
that could affect the stability of a simulation, including the particular finite difference stencils used,
the set of variables that are solved for, applying the correct boundary and regularity conditions for
these variables, etc. Therefore, the approach that we take to construct a stable code, is to begin
by using techniques that have been proven to work for similar systems, and then attempt to solve
any new problems that may arise.

We now return to the discussion of the CFL condition, which is of relevance to the stability of
most hyperbolic systems. For the FD approximation (1.66) to the wave equation, the CFL condition
can be derived by performing a Fourier analysis of the update scheme (1.68), and demanding
that the single-step growth factor of an eigenmode ox eik#+«t) be less than or equal to 1 for
stability. Intuitively, one can see why the CFL condition should exist for an explicit scheme by
the following argument (see Figure 1.2 below). The characteristic speed of propagation of signals
in the 1D wave equation (1.46) is v = 1. Hence, in a numerical evolution, to correctly represent
the flow of information to a grid point z; at time ¢, grid points within a region of size greater than
[z; — VAL, z; + vAt] = [z; — At,2; + At] must be referenced at time ¢ — At. The FD difference
scheme in (1.68) references the points [z; — Az, x;, z; + Az]; and therefore, to satisfy this causality
requirement, we need Ax >= At, which is exactly the CFL condition.

Dissipation

A method that we often use to construct stable FD approximations of hyperbolic equations, is to
explicitly add numerical dissipation. Dissipation is effectively a low-pass filter applied to the grid
function, suppressing high-frequency components in the numerical solution. Here, high-frequency
always refers to wavelengths on the order of the mesh spacing h. The reason why dissipation
is effective, and usually necessary, is that most FD schemes cannot accurately propagate high-
frequency components of the solution; moreover, it is the high-frequency components that tend to
exhibit the fastest growth in an unstable scheme. The dissipation technique that we most often
use is the Kreiss-Oliger method [70], whereby a term of the form

N € . N N N N
Dyou; = E (’u.,'_z — 44,1 + 64; — 4h;41 + ui+2) (1.69)

is added to a difference equation in an “appropriate” fashion. € is a positive, adjustable parameter
controlling the amount of dissipation added, and must be less that 1 for stability (as can be shown
for the appropriately adjusted scheme (1.68) by Fourier analysis, or by a less rigorous argument
that we will present shortly, applicable to a general FD scheme).

The Taylor expansion of (1.69) about z; is

Dpoti; = eh*u™" + O(R®), (1.70)

CHAPTER 1. INTRODUCTION

21

Numerical “characteristic speed” = 22 =
P At

/\
/ N\ Physical characteristic speed = v

>|=

— —1
- | - |
— |
- | - |
—1 —
| - | -
—1 —
| - | -

(xt — Az, t) (z4,1) (z* + Az, t)

Stable evolution : § > wv

Figure 1.2: A schematic demonstration of the CFL condition.

CHAPTER 1. INTRODUCTION 22

from which it is apparent that adding a term of the form (1.69) to a second-order-accurate FD
approximation should not affect the convergence properties of the scheme. Considered as a fil-
ter, equation (1.69) is a convolution of the Kreiss-Oliger filter with the grid function 4. Fourier
transforming to frequency space k = £/h: 4(z;) — 4(£), the convolution operator transforms to a
multiplication, and (1.69) becomes

Dy,ti(€) = esin*(€)a(e). (1.71)

& takes on values in the range [—m, 7], for the highest possible wave number % that can be represented
on a mesh with spacing h is % (the Nyquist limit). Written as is, equation (1.71) is a high-pass filter;
i.e. the low-frequency components of 4 are almost completely suppressed after the convolution with
Dy,. Hence, we must subtract Dy,1; from 4; (with € > 0) in order to achieve the desired effect of
reducing the high-frequency components of the solution. Furthermore, we can see that if e > 1, we
will over-compensate for frequencies £ > arcsin(e™*), i.e. we will just be reintroducing some of the
high frequency components but with opposite sign, and possibly even amplifying them if € is large
enough.

In general, there are several possible ways to add Kreiss-Oliger dissipation to a given FD scheme.
For example, one way to add it to (1.66) is to subtract the high-frequency part of the solution at
the most retarded time level @p,_1, ;. Then (1.68) becomes

~n+1l __ gxrn ~n—1 2(am ~n)
T =20 — AT 4+ N (Ag, — 247 +ag)

i

(af= —4al7 +6ap" —4al ' +aly) (1.72)

Iterative Solution of Non-linear FDEs

The update scheme (1.72) for the wave equation is rather trivial, and can easily be solved exactly
(i.e. to within machine precision) in an evolution code. However, this is not typical of the FDEs we
will obtain from Einstein’s equations; moreover, many of the FDEs we must solve are non-linear.
The method we use to solve non-linear, hyperbolic type FDEs is point-wise Newton-Gauss-Seidel
(NGS) relazation, which we now describe (we use multigrid for elliptic equations—see Section
1.5.6).

Denote a system of finite difference equations via

Fi(z;) = 5. (1.73)

Here, the indices label unknown wvariables x; (not to be confused with a spatial coordinate), FD
equations F; and source functions S; (so an index will run from 1 to NyN,, where N, is the total
number of grid points, and N, is the number of unknown variables per grid point). The F; are
in general non-linear, and so we will solve for the corresponding z;’s via Newton’s method. In

Newton’s method, we first write the solution in the form z; = arg-o) + 6:05-0), and Taylor expand
(1.73) about z; = xg_o) to first order:

F, (x‘."’) LY OE 52 =S+ 0 ((595;.0))2) . (1.74)

J . lzj=2
; 5:1:] J 3
The Jacobian of the system is defined to be

Jii (xgn) =0k (1.75)

- 61’_7' |zi:zj

CHAPTER 1. INTRODUCTION 23

Using (1.75), we rewrite the leading order part of (1.74) in the following form:
> i (27) 60 = 5i = B (a”). (1.76)
J

Newton’s method proceeds by first solving the system of linear equations (1.76) for the pertur-

bations 63:5-0), given an initial guess xg_o)
guesses mg) = mgo) + 5:1:5.0), xg_z) = :1:5'1) + 6:55.1), The iteration stops once a solution xiN) has
been obtain that satisfies the full non-linear FDEs (1.73) to within a specified tolerance. Newton’s

, and then iterating the procedure using the sequence of

method is very efficient given a “good” initial guess: then a residual norm ||F; (:L'ECN)) — S;|| will

converge to zero quadratically as a function of the number of iterations N [71].

In our case, given the number of unknowns x; we have in a typical problem, it would be too
expensive (computationally) to solve each step of Newton’s method (1.76) exactly. Instead, we
apply a single Gauss-Seidel relazation sweep to the linear system (1.76) per Newton iteration. A
Gauss-Seidel relaxation sweep consists of using each equation F; in turn to (approximately) solve
for the corresponding unknown z;, by assuming that all of the other variables z;, j # ¢, are known.
In addition, once a variable is solved for in this manner, it is immediately used in subsequent
steps of the relaxation sweep (this distinguishes Gauss-Seidel from Jacobi relaxation). Thus the
convergence properties of Gauss-Seidel relaxation depend on the order in which the variables are
traversed in the sweep.

This combination of Newton iteration with Gauss-Seidel relaxation is what we refer to as
Newton-Gauss-Seidel relaxation, and from experience it is quite efficient at solving hyperbolic-
type equations (usually less than 10 iterations per time step were required for the results presented
in this thesis).

1.5.5 Adaptive Mesh Refinement

A computational difficulty that often arises in the problems that we are interested in solving is that
a wide range of relevant length scales are present within the computational domain. Furthermore,
the smaller length scales tend to occupying smaller volumes of space. For example, in a black
hole collision, the black holes represent the smallest length scales ~ M (the black hole mass),
but occupy a relatively small fraction of the grid, as the outer boundary needs to be on the
order of 100M away from the collision to obtain good waveform estimates. A uniform grid then
becomes quite inefficient at representing functions, because if given sufficient resolution to resolve
the finest length scale, the grid will be over-dense in regions covering larger length scale features.
Computational resources, including memory, disk-storage and CPU time, scale (at best) linearly
with the number of grid-points processed during an evolution. This makes uniform grid solutions
of FDEs, at the desired level of accuracy, impractical on extant computer systems. One obvious
solution is to use non-uniform grids; however, this complicates the finite difference stencils, and,
more significantly, a single non-uniform mesh cannot, in general, adapt to changing features of the
solution. Another alternative, that we have chosen to implement, is called adaptive mesh refinement
(AMR), whereby the computational domain is covered by a dynamical hierarchy of uniform grids
of differing resolution. We use a version of the Berger and Oliger (B&O) algorithm [72], which we
describe in the remainder of this section.

AMR Grid Hierarchy

In the Berger and Oliger AMR algorithm, the computational domain is decomposed into a hierarchy
of uniform meshes (see Figure 1.3) with the following properties:

e The hierarchy contains £; levels. Each level £ contains grids of the same resolution—the
coarsest grids are in level 1 (the base grid), the next-coarsest in level 2, and so on until level

CHAPTER 1. INTRODUCTION 24

£y, which contains the finest grids in the hierarchy.

e The ratio of discretization scales hg/hgi1 between levels £ and £+ 1 is called the spatial
refinement ratio ps ¢. pse is typically an integer greater than or equal to 2. For simplicity, we
will also assume that ps ¢ is the same for all levels (which is what we have used in practice
so far), and therefore use the symbol p; to denote the spatial refinement ratio.

o All grids at level £+ 1 (child grids) are entirely contained within grids at level £ (parent grids).
Grids at the same level may overlap.

e In our simplified variant of the B&O algorithm, we require that all grids within the hierarchy
share the same coordinate system. In particular, this implies that all grid boundaries run
parallel to the corresponding boundaries of the computational domain. In addition, we require
that a child grid must be aligned relative to its parent grid such that all points on the parent
grid, within the common overlap region, are coincident with a point on the child level. The
original B&O algorithm allowed for a child grid to be rotated relative to its parent.

As we will discuss in detail below under the heading “Dynamical Regridding via Truncation
Error Estimation”, the particular grid structure that exists at any given time is calculated so that
at any point & within the computational domain, the finest grid covering that point has sufficient
resolution to adequately resolve all features of the solution there. This is an important property of
the grid hierarchy, not only for the obvious reason of providing the desired resolution everywhere,
but it justifies the use of the B&O time-stepping algorithm to evolve the hierarchy, as we now
explain.

The Berger and Oliger Time-Stepping Algorithm

An adaptive grid hierarchy is evolved in time by taking a particular sequence of unigrid time-
steps on the individual grids within the hierarchy. This sequence of updates is determined by the
following rule, applied recursively at any given level (see Figure 1.4 for a pseudo code description
of the time-stepping procedure): all grids at level £ are evolved by a single time step of size At,
before the grids at level £ + 1 are evolved by p; ¢ time steps of size Atyy1 = Aty/pre. pre is called
the temporal refinement ratio, and is an integer greater than or equal to 2, though typically is set
equal to p,¢ or larger in order to satisfy the CFL condition. As with p,, we have to-date only used
a constant temporal refinement ratio p; for all levels.

The reason why a time step is first taken on coarse level Z, is that the solution obtained there
at time t 4+ Aty is then used to set boundary conditions, via linear interpolation in time, for the
subsequent evolution on the finer level /41 (unless some portion of the fine level abuts the boundary
of the computational domain, where the given boundary conditions of the FDE can be applied).
In other words, at interior boundaries we are, in a sense, not supplying “boundary conditions”;
rather, we are evolving them using the FD equations from the coarser level. It is possible to do this
because, as should become clear when we explain the dynamical regridding procedure, the solution
obtained on the coarse level in the vicinity of the fine level boundary will be as accurate, to within
the specified truncation error, as a putative solution obtained on a fine level encompassing the
entire computational domain. The solution on the coarse level interior to this boundary will not
be as accurate; however, the assumed hyperbolic nature of the FDEs will protect this inaccuracy
from polluting the coarse/fine boundary region within a single coarse level time step.

After p; time-steps on level £+ 1, when the solution on grids at levels £ and £+ 1 are again in
synchrony, grid functions from level £ + 1 are injected into the coarse grids at level £, in the region
of overlap between the two levels. Thus, the most accurate solution available at a given point Z is
continuously propagated to all grids in the hierarchy that contain Z. Injection simply consists of
copying values from level £+ 1 to level £ at common points (in the more general B&O algorithm,
where finer levels can be rotated relative to coarser levels, the injection step requires some form of
interpolation).

CHAPTER 1. INTRODUCTION 25

””” Computational domain,
! covered by ahierarchy
ffffff — - of uniform grids
Level 1 grid Level 2 grids Level 3 grids

Figure 1.3: An example of a Berger and Oliger mesh hierarchy. The upper diagram shows the
computational domain, covered by a three level deep hierarchy of uniform grids, where
higher level numbers denote levels consisting of grids with higher spatial resolution.
The plots below this demonstrate how the hierarchy is stored in memory, namely as a
collection of individual grids. Thus a given point on the computational domain could
be represented in multiple grids in the Berger and Oliger scheme.

CHAPTER 1. INTRODUCTION

26

for (requested number of coarse steps)
call single_step(level 1)
stop

subroutine single_step(level L)
if regridding_time(L) then
regrid from levels L to Lf
end if

if (L>1) then
set boundary conditions along AMR boundaries at time
t(L)+delta_t(L) via interpolation from level (L-1)
end if

perform 1 evolution step for all grids at level L
t(L)=t (L)+delta_t(L)

if (L<Lf) then
1: repeat [rhot=delta_t(L)/delta_t(L+1)] times: call single_step(L+1)
2: inject the solution from level L+1 to level L
in the region of overlap between levels L and L+1
end if

return from subroutine
end of subroutine single_step

Figure 1.4: A pseudo-code representation of the Berger and Oliger time stepping algorithm.

CHAPTER 1. INTRODUCTION 27

Dynamical Regridding via Truncation Error Estimation

One of the key features of Berger and Oliger style AMR, is that the grid hierarchy is constructed
dynamically, to give resolution where it is needed as a solution unfolds. The process of modifying
an existing grid hierarchy, whether adding, removing, extending grids, etc., is called regridding.
On each level, regridding is performed periodically, at a user specified rate of once every T, time
steps (a different rate could be chosen for each level). When it is time to regrid at level £, all levels
from £ to £; are involved. Ideally 7). should be set to the largest possible number that could track
evolving features of the solution. For example, if the characteristic speeds of the FDEs are 1, and
the Courant factor A = 0.25, then one would expect a wave front to travel by at most 1 grid point
every 4 time steps. In that case, T, should be set to 4. However, T;. could be less than 4 without
incurring much of a speed penalty (in numerical relativity, the evolution phase is usually the speed
bottle-neck), and setting T, to numbers several times larger than 4 would also not cause problems
if sufficiently large buffer zones are added to each grid. We will explain buffer zones shortly.

Local truncation error estimates drive the regridding phase. To avoid confusion, notice that
what we will now call the truncation error estimate (for historical reasons) is an approximation of
what was defined as the solution error (1.48) in Section 1.5.4. However, by the assumed Richardson
expansion, regridding based upon either form of error estimate should give equivalent results. At
regridding time on level £, the truncation error is estimated for each grid g on levels £ to £; via the
following procedure (we use a slightly different mechanism in the actual code, which is explained
in Section 2.3.1). Two copies of grid g, that has discretization scale h, are made: the first g" is
an identical copy of g, while the second g?" is a 2 : 1 coarsened version of the first. Then two
unigrid evolution time-steps of size At, are taken on grid ¢g”, and one unigrid evolution time-step
of size 2At, is taken on grid g?". Dirichlet boundary conditions are used during the evolution on
grid boundaries interior to the computational domain. Then, based on the Richardson expansion
(1.50), an O(h™) estimate of the solution error of some evolved grid function u can be calculated
by subtracting the solutions obtained at ¢t + 2At, on grids ¢g?* and g" (the grid function u” is
coarsened before the subtraction):

el (u) = ut —u? + O(h™), (1.77)

where n is the order of the finite difference scheme. We define the truncation error estimate (TRE)
Ty for grid g at level £ to be some point-wise norm over solution error estimates of a specified set
of grid functions:

75(Z) =) _ lle" (u(@)]] (1.78)

Once 7, has been calculated for all grids on levels £ to £;, this information is passed to a
clustering algorithm, which determines an appropriate set of grids to keep the truncation error
below a global threshold 7iax on the finest level covering each point within the computational
domain. We will not go into the details of any specific clustering algorithm here, as there are many
such algorithms (see [73] and the references therein), most rather ad-hoc in nature (except in 1D,
where the problem is trivial); rather we will give a brief outline of the main steps in the clustering
process. First, regions of high truncation error (74(%) > 7max) on grid g are flagged. Second, the
flagged region is expanded in all directions by a user specified number of grid points—the buffer
zone. This provides a “safety zone” between the region of high truncation and what will become
the boundaries of child grids of g, so that we can self-consistently use evolution on grid g to set
the boundary conditions for evolution on the child grids, via the B&O time-stepping algorithm.
Also, as mentioned above, a larger buffer zone will allow us to regrid less frequently, if desired, as
one would in general expect the region of high TRE to track fine features of the solution, which
propagate with characteristic speeds. Third, the expanded region of high TRE on level g is covered
by a set of child grids, or clusters, g.. Ideally, one wants to choose a minimal set of clusters yet
achieve a large filling factor, defined as the ratio of grid points with high TRE to the total number

CHAPTER 1. INTRODUCTION 28

of grid points within the set of grids g.. This is trivial to do in 1D; however, in 2D and higher,
there is often no unique set of clusters that achieve a desired filling factor (which is why clustering
algorithms are rather heuristic in nature). Specifying a high filling factor (close to 1) will produce
many tiny clusters, which leads to larger computational overhead, and tends to complicate the
process of dealing with high-frequency components of the solution of the FDEs that often develop
at parent-child boundaries (we will refer to these unwanted high-frequency parts of the solution as
noise). A small filling factor will give a few large clusters, which could result in a lot of unnecessary
refinement.

Finally, once the set of child grids g. at level £ has been determined, the grid functions on g,
are initialized, either by copying function data from the prior set of grids on level £+ 1 that overlap
the new set g., or via interpolation of data from parent grids at level £ to newly refined regions in

Ye-

Advantages/Disadvantages to Using B&O AMR

To conclude this section, we list a few of the advantages and disadvantages of using Berger and
Oliger style AMR, compared to using a non-uniform grid. The advantages of using B&O AMR
include

e Dynamical regridding based on truncation error estimates allows one to “easily” probe un-
known regions of solution space, whereas a non-uniform grid generally needs to be specified
a priori to give resolution where it will be needed.

e The recursive nature of the B&O time stepping algorithm makes the most efficient use of
resources possible, within limitations imposed by accuracy considerations (and the CFL con-
dition). For in a typical hyperbolic system, temporal gradients are of the same order of
magnitude as spatial gradients, and thus the time step should be proportional to the dis-
cretization scale in order to achieve the desired level of accuracy. Consequently, the time step
one would need to use to evolve a non-uniform grid is set by the smallest cell size on the grid.

e Since the B&O algorithm operates by calling a sequence of unigrid evolution routines, the
AMR code can be written in a generic fashion; in other words, it is a straight forward task
to add an AMR framework to an existing unigrid code.

Some of the disadvantages compared to a non-uniform grid include:

o High-frequency solution components (“noise”) often develop at parent/child boundaries when
using standard interpolation methods there. This needs to be dealt with in some fashion,
and often involves finding a set of interpolation and dissipation operators that work for the
particular set of FDEs that are being solved.

e There is some extra overhead involved in storing and evolving the grid hierarchy, where a
point with high truncation error could appear on grids in many levels. However, even with a
small spatial refinement ratio of 2 : 1, this overhead is rather small.

e It is not a trivial task to incorporate non-hyperbolic equations into the B&O AMR, framework—
see Section 2.3.1 for a description of how we have incorporated elliptic equations into the
algorithm.

1.5.6 Solution of Elliptic Equations via Multigrid

The Newton-Gauss-Seidel (NGS) relaxation method that we discussed in Section 1.5.4 above is
not, by itself, an efficient method to solve elliptic-type finite difference equations. What we use
instead is the multigrid (MG) method—one of the fastest algorithms currently available to solve
elliptic FDEs [74]. In this section we give a brief overview of the Full Approzimation Storage (FAS)
multigrid algorithm [75], which is a variant of MG designed to directly solve non-linear PDEs.

CHAPTER 1. INTRODUCTION 29

Iterative Solution Methods and the Residual

Before we describe the FAS algorithm, it will be useful to discuss the operation of an iterative
solution scheme from the point of view of the residual. The residual R" is the truncation error of
an approximate solution 4" to an FDE (1.47) (where again we use the superscript A to denote the
discretization scale):

RM(ah) = Lhah — f (1.79)

If we solved the FDE (1.47) exactly the residual would be zero. When solving (1.47) via an iterative
technique, the goal is not, in general, to find a 4" such that R"*(4") = 0 in (1.79); rather, starting
from an initial guess ﬂg, we want to generate, via iteration, a sequence of approximate solutions
4" n = 1,2,..., until we obtain a solution 4% such that the norm of the corresponding residual
is below some threshold. Desired properties of an iterator S”, whose operation can be written in
matrix form as 4", = Shal, include that ||R"(al,,)|| < ||R"(al,)||, and that each application of
Sh can be performed relatively quickly. Note that the iterator S could change from one iteration
to the next (hence the subscript n), as is the case with a NGS relaxation sweep of a non-linear

FDE for instance, where S? changes due to the Newton iteration.

The Concept of Multigrid

Multigrid is an iterative solution technique, employing a particular relaxation method to the PDE
discretized on a sequence of grids, each with different spatial resolution. A general property of
most relaxation methods is that they are efficient at reducing the high-frequency components of
the residual (where, as in the discussion of dissipation above, high-frequency refers to Fourier
components whose wavelengths are on the order of the mesh spacing h), while conversely, they are
very ineffective at reducing the low-frequency components of the residual. In the context of MG, a
relaxation scheme with this property is called a smoothing operator. It is this ability of relaxation to
smooth the residual that is the motivation behind MG, the basic operation of which is as follows.
We apply a few iterations of the smoothing operator. After this, the residual R"(4") will be a
smooth function relative to the discretization scale h, and thus we can accurately represent this
residual on a coarser grid, with discretization scale 2h 2. We therefore transfer the problem of
reducing the residual to the coarser grid (the details of which will be presented shortly). Now, what
was lower frequency (wavelength on the order of 2h) on the fine grid becomes high-frequency on the
coarse grid, and hence relaxation on the coarse grid will be effective at reducing these slightly longer
wavelength components of the residual. This process of smoothing-plus-coarsening is repeated until
we reach a small enough coarse grid where it is feasible to solve the resultant system of equations
exactly, thus eliminating the lowest frequency components of the solution. The final stages of a
MG iteration then consist of a series of operations that propagate the low-frequency corrections,
calculated on the coarser grids, up through the grid hierarchy to the finest resolution grid. This
particular form of MG iteration is called a V -cycle, because the smoothing-plus-coarsening phase
proceeds all the way from the finest to coarsest levels (down the V), followed by the correction
phase which goes all the way from the coarsest level back to the finest level (up the V). The V-cycle
is repeated until the residual on the finest level mesh is driven below some threshold.

Pointwise Newton-Gauss-Seidel is one of the relaxation schemes that usually performs well as
a smoothing operator [74]. We use this method in our code, and we simultaneously solve for all of
the unknowns at a given grid point at each step of the relaxation sweep. Also, we visit points on
the 2D grid in so-called red-black order. Imagine colouring points of the grid with red and black
in a checkerboard fashion; then a red-black sweep updates all the unknowns at red grid points
first (in lexicographic order), followed by unknowns at black grid points. For elliptic equations
differenced with a 5-point stencil'3, red-black ordering decouples the FDEs between red and black

12 A 2:1 coarsening ratio is typical, though not essential, for multigrid.
13 An interior finite difference equation at location (i,7) then references variables at (i,7), (i + 1,7), (4,7 + 1),
(:—1,7) and (¢,5 — 1).

CHAPTER 1. INTRODUCTION 30

points. Consequently, after a red-black relaxation sweep, the residual on all black points will be
Z€ero.

The FAS Multi-Grid Algorithm

In the FAS MG algorithm, we construct the set of finite difference operators that will be used to
smooth the residual, on the sequence of grids with discretization scales hg, h1, ...hx, where we use
hiv1/hi = 2, as follows'* (to simplify the notation a bit in the following discussion, we will only
use a superscript ()7, rather than ()= to denote discretization at level h,,). The fine-grid problem
is

L%° = f+ RO, (1.80)

where the goal of the MG iteration is to reduce ||R°|| to a specified small number. In the first
step of the algorithm, we apply a certain number of relaxation sweeps to (1.80), until the residual
[|R°(40)|| is smooth. Next, we transfer all of the grid functions, including the residual, to a grid
with h = h;. This transfer operation is called restriction, and is denoted by the operator I§. For
example, the restricted residual will be I} R°. We then define the system of FDEs on level h; as:

L'a' = f' + RY, (1.81)

where L! is the operator describing the system of PDEs discretized on the mesh with spacing
h = hy, 4! are the new set of unknowns, R! is the new residual function for this system of FDEs
with approximate solution @', and the new “right hand side” vector f! is given by

f'=IL[f + R° +7°. (1.82)

70 is the truncation error introduced by approximating the desired system of FDEs with grid
spacing hg on the coarser grid with h = h;:

0 = L'[[;a°) - I, f. (1.83)

Adding the truncation error to the coarser grid FDEs is a crucial component of the algorithm,
for we are not interested in the solution of the PDE Lu = f on the mesh at level hy; rather, we
need a vehicle on the coarser mesh that will continue to smooth the restricted residual of the fine-
mesh problem via adjustments of the unknowns, and we know that relaxation of the discretized
operator Lu = f on level hy gives us this vehicle. Therefore, by adding the truncation error, we are
effectively adding a source term to the coarse grid problem that will drive the coarse grid solution
to that of the fine grid, at common grid points. For notice in equations (1.81-1.83), that if R® = 0,
i.e. the fine grid problem is solved, then the (presumed unique) solution of the coarse grid problem
(1.81) is a4 = I}a°.

Now that we have the problem transfered to the coarser level h;, we repeat the smoothing-
plus-coarsening steps: the relaxation operator is applied to (1.81) until the residual R' is smooth,
then the system of equations is transfered, as before, to a mesh with spacing h = hy. This process
is repeated until we reach the coarsest level, h = hy. At this point, the coarse problem should
be solved “exactly”, preferably using a combination of Newton-iteration and direct solution of the
resultant linear system. The reason why the rule-of-thumb is to use a direct solution, rather than
continue to use the same relaxation method that was used for smoothing (which is feasible on the
coarsest grid, as the corresponding system of equations is small enough that relaxation is efficient),
is that studies of the convergence properties of some relaxation techniques on model problems (such
as Gauss-Seidel relaxation for the Laplace operator) show that relaxation is marginally unstable
for the longest wavelength components of the solution [75]. The growth rate of the unstable mode

14 Notice that the level numbering scheme is opposite to that used in the description of AMR, where finer levels
had a higher level number.

CHAPTER 1. INTRODUCTION 31

is often slow, i.e. it takes hundreds or thousands of iterations for it to manifest, and hence does not
pose a problem in the stages of MG prior to the coarsest level, where comparatively few iterations
are applied. In our case, however, we have not seen any adverse effects solving the coarse grid
problem via relaxation %) implying that relaxation is stable in this case. Furthermore, it is not
necessary to solve the coarse grid problem exactly (i.e. to within machine precision); reducing the
residual by two to three orders of magnitude is sufficient.

The first stage of the V-cycle is now complete. The second (and final) stage consists of prop-
agating coarse-grid-corrections (CGC), level-by-level, from the coarsest level hy all the way up to
the finest level hg. The CGC of the solution on level h; to that on level h;_; is calculated as

AGY = PGt - I At (1.84)

Pz.i_1 is called a prolongation operator, and interpolates a grid function from the coarse to fine
mesh. On the finer mesh, 4¢~! is updated via 4! = 4*~! + Ad*~!. The CGC step from level h; ;
to h; reduces low-frequency components of the residual on level h;, but typically also introduces
high frequency noise there. Therefore, one usually applies a few post-CGC sweeps of the relaxation
operator on the corrected solution to eliminate this noise (the relaxation steps performed during
the first stage of the V-cycle are similarly referred to as pre-CGC relaxation sweeps).

Figure 1.5 is a pseudo code summary of the FAS, V-cycle MG algorithm just described.

Restriction/Prolongation Operators

There are a large set of possible restriction and prolongation operators that one can use in MG.
We will not go into any of the details describing these choices, or requirements that a restriction-
prolongation pair must satisfy (see [74] for details); rather, we simply list the operators that we
use, namely half-weight restriction and bilinear interpolation.

Given a two dimensional fine-grid function u?, j» and corresponding coarse grid function u%fLJ,
where (i,7) € [1..N;,1..N;] and (I,J) € [1..(N; — 1)/2,1..(N; — 1) /2] are indices labeling identical
points of the coordinate system within their respective meshes, the half-weight restriction operator
is defined as

1 1
uily = 5“7,]' T3 (uiyr,y +uiin, +uljpn Tl 1),
i€2.N;—1, j€2.N; -1,
= uz ; otherwise. (1.85)

The bilinear interpolation operator is

“?,j = “%v
u?:l:l,j = % (“%71 + u?j:l,]) , tEx1e€l.N,
wlr = g (dhtudha), JE1eLN;,
u?:tl,j:l:l = 3 (“%?J + U%’L,J + u%ﬁ]:tl + u?j:l,J:I:l))

it+1€1.N;j+1€1.N;. (1.86)

The combination of half-weight restriction and bilinear interpolation tends to work well with
red-black NGS relaxation [74].

5Except in certain Brill wave dominated spacetimes, see Section 2.3.8, though it is still unclear whether the MG
problems we have then are related to low-frequency instabilities of relaxation on the coarsest grid.

CHAPTER 1. INTRODUCTION

32

subroutine FAS_MG
do while (residual > tolerance)
call vcycle()
end do
end of subroutine FAS_MG

subroutine vcycle()
do i = 0 to N-1 (fine to coarse)
repeat pre_CGC times:
perform a relaxation sweep on level(h[i])
compute the residual on level(h[i])
restrict grid functions and residual to level(h[i+1])
compute the truncation error of the solution on level(h[i+1])
compute the new RHS vector for level(h[i+1]), by adding the
restricted residual and RHS to the truncation error
end do

solve the system of FDEs on level(h[N]) exactly

do i = N-1 to 0 (coarse to fine)
compute the CGC from level(h[i+1]) to level(h[i])

apply the CGC to unknown variables at level(h[i])

repeat post_CGC times:
perform a relaxation sweep on level(h[i])
end do
end of subroutine vcycle

Figure 1.5: A pseudo-code representation of the FAS, V-cycle multigrid algorithm.

CHAPTER 1. INTRODUCTION 33

Boundary Conditions and Multigrid

We will not discuss in any detail how boundary conditions should be handled in MG; suffice it
to say that the boundary conditions should be treated as an independent difference operator Lﬁ
within the MG framework. Hence, L} should be applied so as to smooth the residual on the
boundary.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 34

CHAPTER 2
NUMERICAL EVOLUTION IN AXISYMMETRY

In this chapter we describe the formalism and corresponding numerical programs that we have
written to study axisymmetric gravitational collapse. The unigrid version of the code was started
about five years years ago by Choptuik, Hirschmann and Liebling. The AMR version of the code
is an extension of a 1D AMR driver written by Choptuik. I began working on the axisymmetric
project almost two years ago, and am predominantly responsible for the black hole excision and
AMR aspects of it. In particular, I performed all of the simulations and data analysis of the scalar
field collapse study presented in Chapter 3, and the excision results presented in Chapter 4.

Earlier numerical studies of axisymmetric spacetimes include: head-on black hole collisions
[77,78, 89,79, 80, 81]; the collapse of rotating fluid stars [82, 67, 83, 85]; the evolution of collisionless
particles applied to study the stability of star clusters [86], disk collapse [87], and the validity of
cosmic censorship [88]; evolution of gravitational waves [94, 84]; black hole-matter-gravitational
wave interactions [90, 91, 92, 93]; and the formation of black holes through gravitational wave
collapse [95] and corresponding critical behavior at the threshold of formation [96].

As discussed in the introduction, there are two primary reasons to focus on a symmetry-reduced
problem, in particular axisymmetry. First, axisymmetry still allows one to model phenomena such
as black hole collisions, neutron stars, gravitational collapse, etc.; and second, axisymmetry reduces
the complexity of the problem so that one can achieve reasonable accuracy via computer simulation,
using current technology. There has not been a very strong effort over the past two decades to
numerically explore the full breadth of axisymmetric, general relativistic physics (the studies listed
in the previous paragraph constitute almost all of the related work done during this period). Some
of the reasons for this include: inadequate computer power, concerns about axis regularity problems
that can lead to instabilities, and, to some extent, a lack of interest, for recently most research effort
in numerical relativity has been directed towards trying to solve the binary black hole problem in
3D. With regards to regularity, numerical dissipation (see Section 1.5.4) and the use of appropriate
variables can eliminate this problem. Available computer power is also becoming less of an issue,
to the extent that many interesting problems can be solved with a serial code (such as the current
version of our code) in a reasonable amount of time, especially when incorporating AMR. However,
to fully explore axisymmetric phenomena, parallel codes will be needed (for the next few years at
least, even if the trend in the increase of computer power continues).

In Section 2.1 below we describe the 24141 formalism, which is a particular decomposition of
the Einstein field equations into a set of PDEs. In Section 2.2 we describe the unigrid code which
solves these equations (without rotation at this stage), and in Section 2.3 we describe the AMR
extension of the unigrid code (which, in addition to the angular momentum restriction, currently
does not incorporate black hole excision). Finally, in Section 2.4, we describe how we solve the
geodesic equations during a numerical evolution, to help probe the geometry of a solution.

2.1 The 2+41+1 Formalism

Here we describe the so-called 2+1+1 formalism [21, 67] that we use to arrive at the specific
differential equations which we solve. This formalism is the familiar ADM decomposition, as
described in Section 1.5, applied to a dimensionally reduced spacetime. The dimensional reduction
is performed by dividing out the axial Killing vector, following a method devised by Geroch [23];
the results are analogous to a Kaluza-Klein reduction [97], in that a 4D axisymmetric spacetime is

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 35

described by 3D gravity with additional, effective “matter” fields. We now summarize the formalism
developed by Maeda et al and Geroch, modifying the notation slightly to suite our needs.

We are concerned with axisymmetric spacetimes. This implies the existence of a rotational
vector field &%, satisfying Killing’s equation:

Legap = &la,p) =0, (2.1)

where g,p is the four dimensional spacetime metric. We choose a coordinate system adapted to
the Killing field, so that £ takes the form

g = (%)a_ (2.2)

In other words, ¢ is our azimuthal symmetry coordinate, and, as can be shown by using Killing’s
equation (2.1), the components of the metric are independent of ¢. We introduce the scalar s and
vector w?® to be the magnitude and “twist” of £€* respectively:

s> = fagaa (2-3)
W = s, (2.4)

and define
w? = WPwe. (2.5)

Notice that w*§, = 0. Next, we define the projection tensor H,g by

€a§
Hap = gap — 5 (2:6)
Hap is used to project tensorial objects from the 4D manifold to the 3D one, via
L Top.. .4 = Tap. " HOHy oo HoHs? (2.7)

L Tpp..°% is an intrinsically three dimensional object, in that contraction of any of its indices
with £ gives zero. We have therefore (in slight abuse of notation) labeled the components of
the projected tensor with Latin indices to signify this. In practice, the components of some three
dimensional tensor are easily obtain from the corresponding components of the four dimensional
tensor when both are expressed in contravariant form !. This is because the vector components
of €% for a # ¢ are zero by (2.2), and hence there is a one-to-one correspondence between non-¢
vector components of a 4D tensor and its projection, as can be seen by decomposing a general
4D tensor into tensors orthogonal to and tangent to £%. As an example, if z* = ¢, and 2'..2°
are the remaining three dimensional coordinates, then the contravariant components of the three
dimensional metric tensor are, from (2.6)

HY® = g%, abe(1,2,3). (2.8)
Defining the three dimensional covariant derivative, D,, by
D, = H, Vg, (2.9)

one can show (see [23]) that the Ricci tensor (¥) Ry intrinsic to the three dimensional geometry of

IThis is in contrast to the ADM decomposition, where the translation is most easily performed with tensors in
covariant form.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 36

Hap is related to the projected four dimensional Ricci tensor L Rgp via

1 1
(3)Rab = ﬁ [Wawb - ’Habw2] + gDanS-i- 1L Ryp. (210)

We use the symbol 7,5 to denote the projected four dimensional stress-energy tensor

Tab = Tnﬂ;'H’yafHdb, (2'11)
from which it follows that T
_ 9

where 7 is the trace of 7,5, T' is the trace of T,,g, and T4 is the ¢¢ component of T,,g. Then, using
the Einstein equations (1.10), and the definition of the Einstein tensor in 3D:

@Gy =@ Ryp — %%ab)R, (2.13)

we can rewrite (2.10) as
GGy = 87T o, (2.14)

where the effective 3-dimensional stress-energy tensor TF,; is

1 T 1 [wew 1 1
TEab = Tab — ZHab (T - g) + g { 2as4b + g [DanS - §HabD28:| } . (215)

Restating the above steps—the dimensional reduction of the Ricci tensor results in (2.10), which
allows us to write a three dimensional Einstein equation (2.14), where all effects associated with the
extra dimension along the direction of the Killing vector are now described by additional “matter”
fields, namely the scalar s and twist vector w®.

To complete the description of the effective three dimensional theory, we need equations of
motion for s and w®. These are obtained by taking the curl and divergence of (2.4), and the
Laplacian of s, and applying various definitions and identities, including the fact that £% is a
Killing vector. Here, we simply state the end results, again referring the interested reader to [23]
for details of the tensor algebra used:

D[awb] = 87rseabc'rc, (2.16)
a[We] _
D [33] = 0, (2.17)
1 2 _ w2 T¢¢

where 7¢ = T%3H,°. All of equations (2.16), (2.17) and (2.18) are evolution-type equations, except
for one component of equation (2.16) (the “t” component), which would be the equivalent of the
angular momentum constraint equation in a 4D ADM decomposition.

In summary, equations (2.14-2.18) are equivalent to the four dimensional Einstein Equations
in a spacetime with Killing vector £*. The remainder of the 2 + 1 4+ 1 formalism involves apply-
ing the ADM space plus time decomposition, as described in Section 1.5, verbatim, to the three
dimensional spacetime with metric H,;, governed by the three dimensional Einstein equations of
(2.14). Therefore, for brevity we will not repeat the decomposition here, rather, we only list a
few definitions that will be used in subsequent sections. n® is the unit time-like vector, normal to
t = const. hypersurfaces within the 3 dimensional manifold. This gives the decomposition

Hyy = Hap + NgMp, (219)

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 37

where H,; is the 2 dimensional spatial metric tensor of the ¢ = const. hypersurfaces. The corre-
sponding extrinsic curvature tensor is defined to be

1
O K5 = —HA“HB”ELnHab. (2.20)

2.1.1 A Scalar Field Matter Source

In the first version of our code, we include a real, massless scalar field ®, as the matter source. The
Lagrangian for the scalar field is
Lo =—3,P59%. (2.21)

Note that this differs by a factor of 2 from the convention in Hawking and Ellis [1], which amounts
to rescaling ® by a factor of /2. From the Lagrangian we can obtain the stress-energy tensor for
®

T? a5 = 29,0®;5 — gap ;s 27, (2.22)

and its equation of motion, namely the wave equation

0% = 0. (2.23)

2.1.2 Incorporating Angular Momentum using a Complex Scalar Field

An axisymmetric scalar field cannot carry any angular momentum?. To see this, look at the
expression for the total, conserved angular momentum of all the matter fields within the spacetime:

J=— / TopénPvV—h d*z, (2.24)
>

where the integration is over a surface ¢ = const., denoted here by X, and h is the determinant
of the corresponding metric tensor. That this quantity is conserved can be verified by applying
Gauss’ theorem to convert the difference in J between two times, corresponding to hypersurfaces
¥, and X5, into a volume integral (assuming that there is no contribution from spatial infinity).
This volume integral will be zero, because T,z is divergence free, and £* is a Killing vector and
thus satisfies (2.1); therefore J must the same on ¥; and Xs.

For the scalar field stress-energy tensor (2.22), the total angular momentum is given by

Jp = —2/ [<I>;a<I>;5 — gaigq);(;q);é] {anﬁv —h d’z (2.25)
>

-2 / ® @50’ V—h d’z, (2.26)
b

where in the second line above we have substituted in (2.2), and utilized the fact that n®¢, = 0.
Thus, if & does not have any angular dependence, Jp = 0.

One obvious way to add angular momentum to the problem is to use a fluid as the matter
source (as originally done by Maeda et al [21]). We would like to do so eventually; however, for
the moment we are most interested in gravitational phenomena, and would thus like to keep the
matter relatively “simple” to deal with numerically. Therefore, we must add ¢ dependence to the
scalar field in a manner that does not introduce ¢ dependence into the stress-energy tensor. One
can do this with a combination of scalar fields, each given a ¢ dependence that is out of phase
with that of the other fields, so as to “constructively interfere” in the resultant stress-energy tensor

2Neither, for that matter, can gravitational waves in axisymmetry—see for instance Wald [29] pg. 297.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 38

(which is a sum of the stress-energy tensors of the individual fields)®. One easy way to implement
this construction is to use a single, complex valued scalar field, as we describe in the remainder of
this section.

The Lagrangian we use for the complex scalar field ¥ is

Ly =-T,039% —m?TT, (2.27)

where Z denotes the complex conjugate of a quantity x, and we have given the field a mass m. The
stress-energy tensor for ¥ is

T‘Paﬁ = [‘I’;a@;ﬁ + liJ;alIJ;ﬁ] — 9aB [|V‘I’|2 + m2|l1’|2]) (2.28)
where |[V¥|? = ¥, ¥i* and |¥|2 = P. T satisfies the following wave equation
0¥ = m2V¥. (2.29)

Taking the complex conjugate of (2.29) gives the wave equation for ¥.
We give U the following angular dependence:

U(p, p,2,t) = WO(pazat)eiwoqﬁa (2.30)

where the constant wp is an integer (for regularity of the field). With this form for ¥ it is not
difficult to see that (2.28) is independent of ¢. However, the total angular momentum of the field
can be non-zero:

Jy = - / (405 + 040 5] VR dx (2.31)
b
= 2w / I [®oToi5] nPV—h d®x, (2.32)
b

where Z,,[z] denotes the imaginary part of z.

2.2 Structure of the Unigrid Numerical Code

This section describes a unigrid program implementing a version of the 2+1+1 formalism described
in Section 2.1. This code only incorporates a real scalar field as the matter source, and thus excludes
the effects of angular momentum. We describe the coordinate system and set of variables we have
chosen to use in Section 2.2.1, with corresponding regularity and outer boundary conditions in
Section 2.2.2. In Section 2.2.3 we state the initial data that we specify. The discretization scheme
is described in Section 2.2.4. Section 2.2.5 discusses the apparent horizon finder we use in the code.
And finally, in Section 2.2.6 we describe our implementation of black hole excision in the unigrid
code.

2.2.1 Coordinate System and Variables

We have chosen to use a cylindrical (p, z) coordinate system, and coordinates where the 2D spatial
metric Hap (2.19) is conformally flat (all variables introduced here, as well as those utilized from
Section 2.1, are functions of p,z and t):

ds? = * (d2® + dp?) . (2.33)

3This is similar to the technique used to obtain static boson stars[98, 99], as well as that used to study angular
momentum in spherical gravitational collapse [100].

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 39

To complete the specification of the 3-metric H;; (2.6), we include a lapse function «, and the
p and z components of the shift vector, # and B* respectively. We define the magnitude of the
Killing vector s? (i.e. gg¢) to be

s2 = ptp2e?r? (2.34)

Without angular momentum, the twist vector (2.4) is zero. Incidentally, this implies that gg, = 0,
where z € [p, z,t], which is exactly the spacetime decomposition that the 4D ADM formalism would
yield, in similar coordinates. In the numerical code we have decided to use ¢ as the fundamental
variable that is evolved, rather than s. One of the reasons for using ¢ is that its leading order
behavior in the limit as p — 0 is & o< p + O(p?), and to achieve stable evolution it appears to be
easier to enforce such a regularity condition, rather than that of s, which involves higher powers of
p: 5 o p” + O(p*).

We convert the resultant second-order-in-time evolution equation for & to first-order-in-time
form by defining a conjugate variable Q as follows

= 20K, A= (2.35)
B% - B
= -2x+ 5 (2.36)
where x is given by
X = %n“@as. (2.37)

The choice of this particular form for Q was motivated by regularity concerns, for certain terms of
order 1/p in the vicinity of the axis cancel in (2.35), and, as with &, the leading order behavior of
Q in the limit as p — 0is Q o< p + O(p?).

To convert the wave equation for the scalar field variable @ to first-order-in-time form, we define

Iy = ?n?9,%. (2.38)

For a slicing condition, we have chosen to implement maximal slicing, where the trace of the
three dimensional extrinsic curvature tensor of ¢ = const. slices within the four dimensional manifold
is zero:

GV K = 0. (2-39)

The relationship between ®)K and @K, the trace of the extrinsic curvature tensor of the two
dimensional manifold with metric Hyp (2.19), is

K = K +. (2.40)

This equation can be derived by substituting H,; from (2.19) into the definition of (J K5 (2.20),
taking the trace, and using the definition of (® K (the trace of (1.29)). Therefore, the maximal
slicing condition in terms of variables of the 2 + 1 + 1 formalism can be written as

A K = —y. (2.41)

To summarize, the fundamental variables for the unigrid code, with a single, real scalar field,
and zero angular momentum are: v, a, #, 3%,5,9Q,® and IIs. All of these variables are functions
of p, z and t. The resultant field equations for the metric variables, and wave equation for the scalar
field, are written out explicitly in Appendix A.1, where the conditions (¥ K = 0 and 8®® K/dt = 0
have been used to simplify the expressions where possible. We end up with four elliptic PDEs—the
slicing condition for a (A.2), the Hamiltonian constraint which is used to solved for ¢ (A.3), and
the two non-trivial momentum constraints that we use to solve for ? (A.4) and * (A.5). The

remaining equations are hyperbolic in nature, one of which (A.8) we optionally used to solve for

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 40

in place of the Hamiltonian constraint.

2.2.2 Regularity and Outer Boundary Conditions

To complete the description of our system of equations, we need to specify boundary conditions.
In our cylindrical coordinate system, where p = rcos(f) ranges from p = 0 t0 p = pmax, and
z = rsin(f) ranges from zmin t0 Zmax, we have two distinct boundaries: the physical outer boundary
at p = Pmax, Z = Zmin, and 2 = Zmax; and the axis, at p = 0.

At the physical boundary, we assume that the “Coulombic” variables of our metric fall off
sufficiently fast to approach an asymptotically flat form, and for the scalar field and “radiative”
components of the metric we assume outgoing spherical waves (described in more detail below).
These particular conditions were chosen for consistency, at least to within a reasonable approxi-
mation, with our goal of simulating an isolated region of strong-field gravity in an asymptotically
flat universe.

For 1, and optionally for «, 8” and §*, we assume Coulombic behavior of the form f = foo+k/r,
where f denotes one of these four variables with value f,, at r = oo, and k is a constant. By
differentiating and applying the chain rule, we can convert this condition into a form that is easier
to finite-difference:

f—fo+pfp+2f:=0 at p= pmax,? = Zmin;Z = Zmax- (2.42)

For asymptotic flatness ¢ = 1, and we choose as = 1,54, = 0 and BZ, = 0. The alternative
boundary condition that we sometimes employ for a, 8° or 3%, is to enforce the required behavior at
infinity as a Dirichlet condition at the outer boundary of the grid; i.e. f = foo at p = pmax; 2 = Zmin
O 2 = Zmax-

For the remaining radiative variables &,Q,® and Ilg, denoted by g, we assume that at the
outer boundary they take on the form g = h(t —r)/r, where h is an arbitrary function. Again, we
convert this condition to a form better suited for finite-differencing:

9t +p9,+29.+9=0 at p=pPmax,? = Zmin, ¥ = Zmax- (2.43)

See Appendix A.1 for all of the outer boundary conditions written out explicitly for each variable.

The above classification of a metric variable as radiative or Coloumbic is somewhat arbitrary,
in particular given the form that we have chosen for the metric!. The result is that we get a certain
amount of reflection of waves that should propagate past the outer boundary, the effect being more
pronounced the closer the outer boundaries are to the region of strong-field evolution, or the further
the initial data and evolution deviate from spherical symmetry.

On the axis, p = 0, we enforce regularity of the metric and matter variables. The regularity
conditions can be obtained by inspection of the equations in the limit p — 0, or more formally, by
transforming to Cartesian coordinates and demanding that components of the metric and matter
fields be regular and single valued throughout [101]. Also, as discussed earlier, the particular choice

4See [52] for choices of metric variables that do, at large r, reduce to a form that can be identified as purely
radiative, and furthermore, combinations of them that directly give components of the gravitational waveforms as
given by linearized theory.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 41

of & and Q as fundamental variables was also motivated by regularity concerns. The results are:

a,(t,0,2) = 0, (2.44)
¥,(t,0,2) = 0, (2.45)
B,(t,0,2) = 0, (2.46)
BP(t,0,2) = O, (2.47)
5(t,0,z) = 0, (2.48)
0(t,0,2z) = 0, (2.49)
®,(t,0,z) = 0, (2.50)
s ,(t,0,2) = O. (2.51)

2.2.3 Initial Data

To obtain initial data that is consistent with the constraint equations and our maximal slicing
condition, we freely specify the functions ®, 1,5 and Q at ¢ = 0, then solve the constraint
equations (A.3-A.5) for ¥, 37 and %, and the slicing condition (A.2) for a.

In general, we use the following six parameter (A4, €, po, 20, Ro, A¢) function to specify the initial
data for the free variables at ¢t = 0:

2

\/(P—P0)2+€(Z—ZO)2—RO

G(p,z) = Aexp |- A

(2.52)

Roughly speaking, G describes a ring of radius Ry, centered at (po, z0), where each cross-section
of the ring is Gaussian-shaped with amplitude A and average width A; a value € # 1 will produce
a prolate or oblate distortion of the ring. A different set of 6 parameters is specified for each of
®,115,5 and . After initialization with (2.52), both & and © are multiplied by p to satisfy the
regularity conditions.

In some simulations, modified forms of (2.52) are used; these modifications will be discussed in
the sections presenting the results of the corresponding simulations.

2.2.4 Discretization and Solution Scheme

In this section we describe the discretization scheme we use to convert the differential equations to
finite difference form, and the methods used to solve the resulting finite difference equations.

We use a uniform grid of size N points in p by M points in z, with equal spacing Ap = Az in
the p and z directions. The value of a function f at time level n and location (¢,) within the grid,
corresponding to coordinate (t, p, z) = (t, (i—1)Ap, (j —1)A; +2zmin), is denoted by f7;. We employ
a second-order accurate Crank-Nicholson type discretization of the evolution equations, whereby
we define two time levels, ¢ and t + At, and obtain our finite difference stencils by expanding in
Taylor series about t =t + At/2. This gives the following second-order accurate approximation to
a first-time derivative of f:

0 t,p,z fzn+1 - zn
%h:ﬂmtﬂ = ,]Tt,] (2.53)

Second-order accurate approximations to functions and spatial derivative operators at t = t + At/2
are obtained by averaging the corresponding quantity @ in time:

n n+1
ni T Qi

Q(t + At/2,p,2) = >

(2.54)

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 42

After discretization of the evolution equations using (2.53) and (2.54), function values are only
referenced at times ¢ and ¢ + At, even though the stencils are centered at time ¢ + At/2. Specific
forms for all the finite difference stencils that we use can be found in Appendix A.2. Note that
we also add Kreiss-Oliger style dissipation (1.69) to the evolution equations—this is essential to
obtain stable (and thus convergent) evolution in our case.

The constraint and slicing equations (A.2-A.5) do not contain time derivatives, and hence for the
multigrid (MG) relaxation scheme they are differenced at a single time. We employ the standard,
second-order accurate, centered finite-difference stencils for all interior operators (1.60,1.65). The
Neumann conditions on the axis (see (2.44-2.51)) are discretized using the following second-order

accurate stencil: n n n
3f(t,mZ)| _ T AL — fsy
7ap p=0 2Ap

At the outer boundaries, we discretize boundary conditions involving spatial derivatives (2.42) using
the following symmetric scheme®, described here for the p = pmax boundary. We want to apply a
boundary condition to solve for the variable f at grid location (N, j), corresponding to coordinate
position (pmax,2). However, in the symmetric scheme, we apply the continuum conditions at
coordinate position (pmax — Ap/2,), similar to the Crank-Nicholson method we use to discretize
in time. Therefore, p derivatives are replaced with the following second order accurate operator

Of(t noo—fR
f(t, p, z)|p:p ENPREN fNJ fN 1,5
6p max Ap

(2.55)

(2.56)

Z derivatives, and other grids functions that need to be evaluated at (pmax — Ap/2,), are replaced
by the average of the corresponding quantity discretized at (pmax,z) and (pmax — Ap,2). For
example,

of(t,p,2) 1 (flr\lf,jJrl — fNi " FN-1541 = flr\ll—l,j—1> (2.57)

0z lo=pmax—tp/2 = 2 2Az 2Az

The 2Zmax and zmin boundaries are handled in a similar fashion, as are the corner points at
(Pmax;> Zmax) and (Pmax, Zmin); however at the corner points the continuum equations are evalu-
ated at (Pmax — Ap/2, Zmax — A2/2) and (pmax — Ap/2, Zmin + Az/2) respectively.

Our multigrid routine is as described in Section 1.5.6. We utilize a pointwise Newton-Gauss-
Seidel relaxation method, updating simultaneously the block of four unknowns (v, a, 3%, %) ¢ at
each interior grid point, to smooth the residual. The grid points are relaxed in red-black order.
After each interior sweep, the boundary conditions are enforced via the same relaxation method
(though in lexicographic ordering about the boundary).

With the above described discretization scheme, we use the following iterative time-stepping
routine to solve for the set of unknown variables (v, a, 8°,3%,5,9,®,Ils) at time ¢ + At, given
known function values at time ¢:

As an initial guess to the solution at time t+dt, copy variables
from t to t+dt

repeat until (residual norm < tolerance):
1: perform 1 Newton-Gauss-Seidel relaxation sweep of the

5The name symmetric refers to the property this scheme often gives (at least to simple equations) to the resulting
matrix representing the linearized system of equations. The reason for doing this is that symmetric matrices tend
to have better convergence properties in an iterative solution method. However, we have experimented with an
alternative, non-symmetric differencing scheme at the outer boundaries, without seeing a significant deterioration in
the robustness of the MG.

80r three unknowns, if 1 is freely evolved.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 43

evolution equations, solving for the unknowns at time t+dt
2: perform 1 MG vcycle on the set of elliptic equations at
time t+dt
end repeat

We set At = A - min(Ap, Az), where A\ < 1 to satisfy the CFL condition. The code implementing
this scheme has been written in a combination of RNPL and Fortran 77. RNPL (Rapid Numerical
Prototyping Language [106]) is used for the majority of the code, taking as input a set of operator
definitions, residual statements and grid definitions, and producing as output a complete Fortran
program. We use a custom Fortran routine to implement the MG solver.

2.2.5 Finding Apparent Horizons

In this section we describe the method that we use to search for apparent horizons (AH’s). We re-
strict our search to isolated, simply connected AH’s. In axisymmetry, such an AH can be described
by a curve in the (p,z) plane, starting and ending on the axis at p = 0. Therefore, the equation
for the apparent horizon (1.44, for 8, = 0) can be reduced to an ordinary differential equation, by
(for instance) defining the level surfaces in (1.41) as follows:

fs =7 — R(0), (2.58)
where
Fo= P2+ (2 —20)?, (2.59)
p = 7sind, (2.60)
(z —29) = rcosb. (2.61)

Thus, fs; = const. describes a family of spheroidal surfaces (when spun about the axis), centered at
(0,20). When (2.58) is substituted into (1.44) (for 6, = 0), and defining fs = 0 to be the surface

with zero expansion, we obtain a second order, ordinary differential equation for R(6):
R”(é) + F(Rl(é)i R(é)a wa a, Bpa ﬂza 5—7 Qa ¢,p7 ,ppa ,zpa 5,9: w,za fa;; ,Zza 5,2; 12 z) = O (262)

Here F is a rather lengthy function of its arguments, and is non-linear in R and R’ (the prime ’
denotes differentiation with respect to). All the metric functions and their gradients appearing
in (2.62) are evaluated along a given curve of integration, and hence are implicitly functions of 8.
6 ranges from 0 to w. For initial conditions, we specify R(0), and regularity of the surface about
the axis demands that R'(0) =0,

To find the AH, we employ a so-called shooting method. If an AH exists, and assuming f,(0) >
20, there will be a locally unique’ value of R(0) = Ry such that integration of (2.62) will end at
R(7) = Ry, with R'(7) = 0. For R(0) > Ry, R will either diverge at some value of § < , or
R'(7) > 0; and for R(0) < Ry, R'(7) < 0. Therefore, if we can find a reasonable bracket about the
unknown Ry, we can use a bisection search to “shoot” towards Ry. Currently, we find a bracket
to search by testing a set of initial points, equally spaced in z at intervals of 3Az. This seems to
work reasonably well in most situations.

We use a second-order Runge-Kutta method to integrate equation (2.62). The metric functions
appearing in F' are evaluated using bilinear interpolation along the curve. We did experiment inte-
grating (2.62) using the 5th order adaptive Runge-Kutta routine found in LSODA [107]; however,
this routine would slow down significantly in the rather common situation where R — oo at some

"In a general collapse scenario, multiple inner horizons could be present, which would also satisfy (2.62). We
want the outermost of these surfaces.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 44

value of 8, and did not offer much improvement in the accuracy of the solution otherwise (we would
probably need to use higher-order interpolation of the metric functions to gain improvements when
using LSODA).

2.2.6 Black Hole Excision Technique

In this section we describe how we implement black hole excision in the code. In particular, we
focus on the definition of the surface of excision, how we modify the finite difference equations
on this surface, “repopulating” grid points when tracking moving black holes, and the smoothing
operators we use to achieve stable excision.

The Excision Surface

From a mathematical point of view, “excising” a region of the grid means specifying appropriate
boundary conditions on a surface enclosing that region. Therefore, to maintain a well-posed de-
scription of our system of equations when excising, we analytically define the surface of excision
via a smooth function, and then specify the boundary conditions on the surface described by this
function. Specifically, we define the surface of excision as a particular value of a monotonic level
function f.(p, z), so that the surface defined by f. = ¢ is entirely contained within the surface
fe = c1 if and only if ¢y < ¢;. The function f, we currently use is

fe=(a1(z — 201)* + P2)P1 (a2(z — 202)° + P2)P2) (2.63)

where P, = my /(2(mq1 +ms)), Py = ma/(2(m1 + my)), and zo1, 202, a1, az, M1, ms are parameters
controlling the shape of the level surfaces. This function was designed to allow excision of either
one (m2 = 0) or two distinct black holes. For spacetimes containing two black holes, we have so far
only experimented with equal mass black holes, for which m; = ms. The values of the parameters
are fixed during the Crank-Nicholson iteration at a given time, but may change with time (to track
a moving black hole for instance). When an AH is detected, we search for a set of parameters so
that f. = const. surfaces roughly match the shape of the AH. Then we choose a number f.o so that
the surface fe(p,2) = feo is some distance inside the AH. We call the region between f.(p, z) = feo
and the AH the excision buffer zone.

Excision Boundary Conditions

After an excision level surface fo = feo is chosen, the region of the grid where f.(p,2) < feo is
ezxcised. As mentioned before, this means that we specify boundary conditions for all of the variables
in the problem on the surface f.(p,2) = feo, and only evolve grid functions at mesh points outside
of this surface. For the variables that have hyperbolic-type evolution equations, namely v, a,Q, ®
and Iy, we simply apply the evolution equations at the boundary surface. We can do this in a
stable fashion because the excision surface is inside the AH, and hence the physical characteristics
are all directed into the excised region (so in a certain sense we are not enforcing any boundary
conditions on hyperbolic equations there). In the numerical scheme, at boundary points we apply
the same discretized evolution equations as at interior grid points, except that we replace centered
difference operators with backward/forward difference operators as required to avoid referencing
the grid in the excised region. A point Z of the mesh, outside of f.g, is defined as a boundary point
if some point in a 3x3 stencil, centered at &, is within the excised region. See Figure 2.1 below for
an example. An exception to this rule is used for Kreiss-Oliger dissipation operators, which are
simply turned off if they extend into the excised region (though we do smooth these points using
alternative smoothing operators, as discussed below). For the remaining variables, 8°, % and «,
solved for using elliptic equations, we specify Dirichlet boundary conditions (described below) on
the surface of excision. If 1) is solved for using the Hamiltonian constraint, then, from the point of
view of the multigrid (MQG) solver, the excision boundary values for 1) are also Dirichlet; however,

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 45

m excised point
o excison boundary point
sample p derivative stencils,

centered at X , and referencing
function values at gridpoints e

_>p

Figure 2.1: The effect of an excision surface on the definition of grid points and FD stencils. In the
figure, we show a sample grid, and excision surface f.(p,z) = feo. All points on the
grid within f.(p, 2) < feo are excised. A boundary point is defined as a point at which
one of the standard, interior FD stencils that we use (see Section A.2) needs to be
modified in order to avoid referencing an excised point. As an example, in the figure
we demonstrate how the first p derivative stencil changes from a centered-difference
stencil to a forward-difference stencil, when applied to the right of an excised point.

the boundary values used in the MG on the advanced time level are obtained by evolving 1) from the
retarded time level. Then, after the CN iteration is completed, we replace the advanced time-level
evolved v grid function with the one computed using MG.

The MG algorithm is unaltered when excising, except in a situation where a fine-grid interior
point becomes an excision boundary point after a coarsening operation. This can happen because
we always define the excised region to be f. < feo. When this does happen, Dirichlet boundary
conditions are applied at the new coarse grid boundary point, with the function value set to that
of the corresponding fine grid point.

Several of the boundary conditions that we have experimented with for 3°, 3% and « include:

o freezing the variables to the values they had at the time of excision

e linearly extrapolating the variables forward in time using the velocities measured at the time
of excision (this is not a useful condition for long-term evolution, as the values of 5#, 3% will
grow without bound, and « will go to zero in finite time if da/dt < 0)

e specifying some constant non-zero value for a on the surface, and choosing certain linear
profiles for 8”7 and % to control the coordinate size and motion of the excised region. These
conditions were specifically designed to treat black hole mergers—see Section 4.2 for more
details.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 46

Most of the boundary conditions appear to be reasonably stable for certain black hole spacetimes,
and in a few situations where we have checked, we do seem to get convergence in the solution
after excision (see Chapter 4 for examples). However, these boundary conditions do not appear
to give results that are consistent with the remaining field equations not used during evolution.
We surmise that the reason for this is as follows. The shift vectors in our coordinate system are
not freely specifiable, for we have used up our “gauge-freedom” to maintain a conformally flat 2-
metric H4p. This is not a-priori a problem, as coordinate conditions result in differential equations
for components of the shift vector, which could still be satisfied with a wide range of boundary
conditions. The difficulty arises, at least in our case, because the effective evolution equations for
the components of the shift vector do not permit the specification of arbitrary (regular) boundary
conditions for both components of the shift vector. To see this, note the form of the pp and pz
components of the extrinsic curvature in our coordinate system:

K, =— B — B85+ pas?] (2.64)

1
-
K, = o (84 67) (265)

In a free evolution, we would evolve these two components of K42, and then integrate equations
(2.64) and (2.65) to obtain the shift vectors, at each time step. Notice though that these equations
are first order coupled PDEs for 8% and $”, and therefore one can only specify “initial conditions”
when integrating them, which amounts to setting conditions on a limited portion of the boundary
of the computational domain. This restriction holds even without an excision boundary present,
and indeed we do see an inconsistency then, in the limit as h — 0, with a fixed outer boundary
location (see Section 2.2.7). However, consistent outer boundary conditions appear to satisfy
the assumed 1/r fall-off behavior in $* and (#, and therefore we can make the inconsistency in an
evolution without excision arbitrarily small, by moving the outer boundary far enough away (which
is practical with the AMR code). Unfortunately, such a “solution” is not possible for the excision
boundary, and work still needs to be done to limit the class of boundary conditions applied there
to achieve fully consistent evolution.

Dissipation

To obtain stable, long-term evolution with excision, it is essential to control unphysical, high-
frequency modes that inevitably develop tangential to the excision surface, in variables solved for
with hyperbolic-type equations (¢, ®,Ig,5 and Q). We have experimented with several excision-
boundary smoothing techniques, some more successful than others. One of the more effective
techniques to control the noise is to apply a simple smoothing operation — namely, replace any
point within a distance of 2 points from the excised region (i.e. those points that no longer have a
Kreiss-Oliger filter applied to them) with the average value of the variable in a 3x3 sub-grid centered
on the point (excluding excised points in the average). One problem with this technique though,
is that it is too “aggressive”, meaning that the averaging operation tends to reduce the gradient
of the function normal to the surface to zero, over time. This is somewhat problematic for 1,
diverges like 1/r towards the black hole, and to conserve the mass of the spacetime, it is necessary
to maintain this correct leading order behavior in 1. The effective of the averaging operator does
apparently converge away in the limit as h — 0; however, at the typical grid resolutions that we
run the unigrid code at, this smoothing can induce significant “mass loss”.

At the root of the problem with the above described smoothing function, and what needs to
be addressed for any high-frequency filter applied at the excision surface, is how to define exactly
what one means by high-frequency, and then target it with an appropriate filter. For example,
when smoothing 1, we do not want to consider large gradients in i) normal to the excision surface
as high-frequency, whereas in the scalar field ® it does no harm to smooth large normal gradients.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 47

An early experiment we tried, to achieve a more effective filter for i, was to use a Kreiss-Oliger
filter rotated in the coordinate grid (with a different angle at each point) to target only those
high-frequency components tangent to the excision boundary. This, as implemented, was only
marginally successful, for to apply the filter correctly, we needed to interpolate the grid-function
values onto the rotated filter’s coordinate system, and it appeared as if the interpolation scheme
caused an instability in the long-run.

An alternative filtering operator that we have experimented with, and that seems to work
quite well for certain evolved variables, is first to smoothly reconstruct the function within the
excised region, and then to apply a (standard) Kreiss-Oliger filter that targets high-frequency
components in the p and z directions, to the entire grid. The reconstruction function is rather
ad-hoc in nature, designed solely to provide a smooth reference-background relative to which high-
frequency modes can meaningfully be defined, and then removed. See Figure 2.2 below for a
pseudo-code description of the algorithm, which operates as follows. The current reconstruction
technique is (approximately) bi-linear extrapolation, applied iteratively, one layer of grid-points
inwards from the excision surface per iteration. After an iteration, the set of newly extrapolated
points are considered ‘un-excised’ for subsequent iterations®. The set of un-excised points used
for extrapolation are spaced rather far apart (2-3 cell widths). This is done to effectively use
only the lower-frequency part of the function for extrapolation, and is necessary to obtain a stable
filter (which, incidentally, is why we did not try higher order extrapolation, as it tends to be more
sensitive to higher-frequency irregularities in the function). Furthermore, after the first n iterations
are complete, we force the extrapolated values on subsequent iterations to tend towards a local
average, to prevent divergent behavior in the interior (especially for functions like 1), which go
as 1/r). After the extrapolation, several passes of Kreiss-Oliger filters (some with their stencils
expanded by factors of 2 or 3, to target lower frequency components) are applied to the excised
region, to smooth away unwanted effects of the linear extrapolation. Then a single pass of a
Kreiss-Oliger filter is applied to the entire grid, except in a region within 2 grid points of the outer
boundary to prevent the 5-point stencil from extending off the grid. In a similar 2 point zone about
the axis, we still apply the filter by “virtually” extending the function to negative values of p, as
dictated by the even or odd character of the function in the limit p — 0.

Grid Repopulation

Finally, we briefly comment on how grid “repopulation” is performed. When the black holes, and
hence excision surfaces, are moving on the coordinate grid, or in situations where the shape of
the apparent horizon changes significantly, it is sometimes necessary to ‘un-excise’, or repopulate
portions of the grid. This is done by extrapolating the values of the functions from adjacent, pre-
existing interior grid points to the newly uncovered points. The extrapolation method that has so
far worked the best is to use the same reconstruction function that is used for smoothing. The
other two methods that we have tried are (1) a straight-copy of function values from directly above
or below the point (i.e. from the +dz directions), and (2) bi-linear extrapolation from adjacent
grid-points.

2.2.7 Convergence, Consistency and Mass Conservation Results

In this section we present convergence, consistency and mass conservation plots from two fully
constrained evolutions, to demonstrate the level of “correctness” of the code. We examine three
diagnostic quantities: the total ADM mass of the spacetime [43], the convergence factor @, (1.55)
for 1 (other variables in the problem show similar convergence behavior as v, and for brevity we
do not show them), and the ¢; norm of the residual (1.79) of the pp component of the evolution

8Though note that the reconstruction is a temporary operation, purely for the purpose of smoothing—we are not
in any way ‘un-excising’ the black hole.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY

48

subroutine smooth_excised_function(grid function f[1..Nrho,1..Nz])
call reconstruct(f)
do i=1,ni
do k=1,nk
smooth f in the excised region only, with a Kreiss-Oliger
filter whose stencil has been expanded by a factor of k
end do
end do

smooth f over the entire grid, with the standard, un-expanded
Kreiss-Oliger filter

set f to 0 in the excised region

return from subroutine
end of subroutine smooth_excised_function

subroutine reconstruct(grid function f[1..Nrho,1..Nz])
for each (i,j) in the excised region
avg_f(i,j) = local average of f over some portion of the
un-excised grid closest to (i,j)
end for

n=1
repeat until all points (i,j) in the grid are unexcised:
for each (i,j) in the excised region
if (i,j) directly neighbors an un-excised point then
f(i,j)=bi-linear extroplation of f from the 4 unexcised
points {(i0,j0), (i0+k,j0), (i0,jO+k), (i0+k,jO+k)}
that are nearest to (i,j) on the grid
if (n>first_n) then
f(i,j)=f(i,j)-epsilon*(f(i,j)-avg_f(i,j))
end if
end if
end for

mark all points (i,j) that were repopulated in the previous
for-loop as un-excised

n=n+1
end repeat

return from subroutine
end of subroutine reconstruct

Figure 2.2: A pseudo-code representation of the reconstruction function and smoothing filter
used to smooth grid functions during excision. In smooth_excised function(), the
current value of ni =4 and nk = 3. In reconstruct(), the current value of k = 3 and
epsilon = 0.15; first_.n = 0 when reconstruct() is used for smoothing, while first_n = 2

when reconstruct() is used for grid repopulation (see the next section).

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 49

equation for K45, which we call E(K 45):

AKA") _ (amB))

En o (2.66)

E(K4B) = H

2
For brevity, we use the function rhs() in (2.66) to denote the right-hand-side of the evolution
equation for K4 (the 2-dimensional analog of (1.37)). The ADM mass is calculated via an

integration over a closed surface, situated near the outer boundary of the computational domain
9. In our coordinate system, the expression for the ADM mass is

Mapm = 1/ pt (—%—ezf"’ [%+%’"‘de

%l | p¢4 (%_62[)0’ |:¢’(ZZ +pz,z:|>dp

S L

Figure 2.3 below shows these quantities for six Brill wave '© evolutions with identical parameters,
except for differing grid resolution and outer boundary location. Figure 2.4 shows similar plots for
a scalar field evolution.

We have used second-order accurate finite difference stencils in our code, and hence, if the
PDEs have been converted to FDEs correctly, we expect second-order convergence of the results.
Specifically, for M apas, we expect second-order convergence to a constant prior to the time when
energy reaches the outer boundary (the causal speed of propagation is ~ 1), we expect Qy to be
=~ 4, and similarly E(K »”) should decrease by a factor of roughly 4 when the grid resolution is
doubled. We do see these trends in the data, with a couple of caveats. First, as discussed in some
detail in Section 2.2.6, our outer boundary conditions for the constrained variables are not fully
consistent with the evolution equations. This causes E(K »”) (and similarly for other components
of E(K4P)) to converge to some non-zero value as Ap — 0, for a given pmay; however, we do see a
trend to consistent results in the limit as pmax — 00. Second, the no-incoming-radiation boundary
conditions used for evolved quantities are not perfect, and part of the wave-like components of
these functions, upon reaching the outer boundary, are reflected back towards the interior. This
leads to poor convergence results after most of the energy has left the computational domain.

2.3 Structure of the Adaptive Code

This section describes a version of the code incorporating an adaptive mesh refinement (AMR)
driver. The algorithm used is a variant of Berger and Oliger’s algorithm (see Section 1.5.5), and the
code was started from a version of the 1D driver used in [4]. A modification of the basic algorithm
is needed to deal with the elliptic equations that we solve for in our evolution scheme. This, and
other minor changes, are described in Section 2.3.1. Section 2.3.2 details extensions to the multigrid
(MG) algorithm required to solve elliptic equations on the grid hierarchies that are produced during
AMR evolution. The clustering algorithm is described in Section 2.3.3, where we focus on how we
satisfy the restrictions imposed on grid-sizes and positions so that the resultant hierarchy can be
used directly by the MG routine. Section 2.3.4 describes how we calculate the truncation error
estimate (TRE), and Section 2.3.5 shows the interpolation and restriction operators we use. The
method that we use to initialize the grid hierarchy prior to evolution is discussed in Section 2.3.6.

9The ADM mass represents the total energy within the spacetime in the limit where the surface of integration
goes to infinity, so the farther the outer boundary is from the region of strong-field gravity, the more accurate the
expression for the ADM mass should become (modulo the usual convergence criteria).

10 A Brill wave is an even parity gravitational wave in axisymmetry.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 50

pmaxilO
E T I I I I I I I ‘ I I I I ‘ I I |
0.3 &7 - Ap, = 0.156 7
202w = 0.078 —
= 0.1 E
0 i\ Lo i s T T S il el T—':
% E ‘ I I \E
o | E
2 .
= 0]
I
6
> 4
2
0
t
E T T 1
0.3 o
202 -
< C
= 0.1 F
O i\ | |
. PR —
S, h
P
A
=g <
6
& 4
2
0
0

Figure 2.3: Test of the unigrid code for Brill wave evolution. Shown are the ADM mass Mapu
and E(K ,”)—the the £> norm of the residual of the evolution equation for K ,*(2.66)—
from simulations run with three different grid resolutions, and two different outer
boundary locations (the figure to the left has pmax = Zmax = —2min = 10, and the
figure to the right has pmax = Zmax = —2Zmin = 20). Also plotted is the convergence
factor @y for ¢ (1.55), computed using the data from the three runs for each of
the tWo pmax cases. The initial data for this example is: &/p is initialized with the
function (2.52), with A = —3.0, Ry =0, A=1, e =1, and (po, 20) = (0,0); Q, ® and
Il are set to zero.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 51

M[ADM

oloNeoRe)

E(K)x10°
OV A O O A O—NWE

EN SRR RN A

t
pmango

E I I I I ‘ I I I I ‘ I I I I ‘ I I \E
0.4 E —;
203 E -_Ap, = 0.156 =
= 0.2 F - 4p, = 0.078 E
0.1 & —Apy = 0.039 =
O = o Ly =
ey |
Lk 3
U -
<2 -
= O | \:
F I I I I I I I I ‘ I I I I ‘ I I \:
6 o~ "‘ E
e e E
2]
O = | | | | | | | | [| | \"-J»"\ | \:

0 10 20 30

Figure 2.4: Test of the unigrid code for scalar field evolution. The same data is shown here as
for the Brill wave example in Figure 2.3 above (though notice that the scale of the
residual is about 2 orders of magnitude smaller than that in the Brill wave case).
The initial data for this example is: @ is initialized with the function (2.52), with
A=0.15 Ry =0, A=3,e=3,and (py,20) = (0,0); Q, Iy and & are set to zero.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 52

In AMR evolution, unwanted high-frequency solution components of the FDEs (“noise”) are often
excited at grid boundaries. In Section 2.3.7 we describe the interpolation and smoothing operators
we apply to certain variables at grid boundaries to control the noise. There are also situations
where the MG solver fails to solve the constraint and slicing equations; in Section 2.3.8 we mention
these problems and how (for the most part) we are able to overcome them. Finally, in Section 2.3.9
we present some convergence test results for the adaptive code.

2.3.1 Modifications to Berger and Oliger’s Algorithm

The driver for the adaptive code follows Berger and Oliger’s (B&OQ) algorithm quite closely. The
most significant differences are that child grids are not rotated, we incorporate a self-shadow hierar-
chy to facilitate truncation error estimation, and the elliptic variables are handled via a combination
of extrapolation and “delayed solution”.

A Self-shadow Hierarchy for Computing TRE

A self-shadow hierarchy is a simplification of the idea of using a shadow hierarchy [108] to do
truncation error estimation. A shadow hierarchy is a coarsened (usually with p;, = 2 : 1) version
of the main hierarchy. Both hierarchies are evolved simultaneously, and the function values of a
given grid in the shadow hierarchy are replaced with those of the corresponding grid in the main
hierarchy whenever the two are in sync. For example, with p; = 2 : 1, each time step of a shadow
grid corresponds to two time steps of the main grid, and the shadow is updated every two main-grid
time steps. A TRE can therefore readily be computed by comparing function values in the shadow
with corresponding values in the main hierarchy just before the update step.

Notice however, that due to the recursive time-stepping procedure of the Berger and Oliger
algorithm, information for computing a TRE is “naturally” available prior to the fine-to-coarse
grid injection step (see Figure 2.5). The coarse level £ is evolved independently of the fine level
£+ 1 from tg to to + At., where At, is the coarse level time step. Also, at t = to the level £ grid
functions are restricted copies of level £+ 1 grid functions in the region of overlap Oﬁ“. Therefore,
prior to injection at time tg + At., the difference in an evolved variable f in levels £ and £ + 1,
within the region Of“, can serve as an approximation to the truncation error 7,(fes1) for f at
level £ + 1:1!

Ts(fe1) = o1 — fe (2.68)

Therefore, for levels £ > 1, we can use (2.68) as the basis for computing truncation error estimates,
without the need to refer to a shadow hierarchy (i.e., the main hierarchy “casts its own shadow”,
hence the name self-shadow hierarchy). This method cannot give a TRE for the coarsest level
(1) in the hierarchy, and so we require that the coarsest level always be fully refined. Thus, the
resolution of level 2 should be chosen to match the desired coarsest resolution for a given problem.

Incorporating MG into the AMR Algorithm

The B&O algorithm is tailored to the solution of hyperbolic PDEs. A time step is taken on a coarse
level £ before steps are taken on finer levels, so that the level £ solution can be used to set boundary
conditions on level £ + 1. The boundary conditions used on level £ + 1 thus come from a solution
of the finite difference equations on level ¢, and if a sufficient buffer zone about the region of high
truncation error is used during regridding, then the solution obtained on level £ in the vicinity of
the boundary of level £ + 1 will differ by an amount less than 7,,,x from a putative FD solution
obtained there at the resolution of level £ + 1.

7T fact, if there are only two levels in the hierarchy, then this estimate is exactly the truncation error estimate
defined in (1.49). If levels finer than £+ 1 exist, then in the overlap Ofif the estimate (2.68) will be modified by an

amount of order (At./ps)?.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 53

The preceding statement is only true for hyperbolic equations, where the finite speed of prop-
agation will prevent contamination of the solution in the boundary region of level £ from a poorly
resolved solution in the interior, where 7y > Timax. Solutions to elliptic equations do not share
this property, and therefore it is not feasible to solve for such equations on the coarse grid alone,
with the intention of supplying boundary conditions for subsequent fine grid time steps. One way
to circumvent this problem is to abandon the B&O recursive time-stepping procedure. In other
words, we could evolve the entire hierarchy forwards in time with a global time step, by performing
a Crank-Nicholson style iteration as in the unigrid code. The elliptic equations would then be
solved over the entire hierarchy using the scheme presented in Section 2.3.2. A major drawback
to this method is that, to satisfy the CFL condition, the global time step will need to be set to
AAp(£Ly), where Ap(£y) is the cell size on finest level £; in the hierarchy.

An alternative option to incorporating elliptic equations into the standard B&O time-stepping
framework, that we have decided to use, is to employ a combination of extrapolation and delayed
solution of the elliptic variables (see Figure 2.5). Simply stated, on coarse levels we do not solve
the elliptic equations during the evolution step of the algorithm; rather, we extrapolate the corre-
sponding variables to the advanced time from the solution obtained at earlier times. The solution
of the elliptic equations is delayed until after the fine to coarse grid injection step from level £ + 1
to £. At that stage, all levels from £ to {; are in sync, and we solve the elliptic variables over this
subset of the hierarchy, thus including all of the fully resolved details from finer levels interior to
level £ in the solution. Extrapolated boundary conditions are used at AMR boundaries on level £.

The current extrapolation scheme used for the elliptic variables is as follows. We use linear
(2nd order) extrapolation in time, with periodic “corrections” to try to account for changes that
occur upon global MG re-solves. For level ¢, the two past-times used in the extrapolation are the
two most recent times when levels £ and £ — 1 were in sync (thus, at times when a solution of the
MG variables involving at least levels £ — 1 to £; was obtained). In other words, every p; steps we
save the MG variables for use in extrapolation. The correction is calculated as follows. Whenever
level £ is in sync with level £., where £, < £, a MG solve takes place over levels £...f;. Denote
by fi(t) the value of a variable f at level £, calculated via extrapolation from f(t — p;At;), and
f(t—2pAtg)e, and let f(t) denote the value of the same variable after the MG re-solve at time .
The correction is defined to be R

_ fe) — fo(®)

ce(l —— 2.69
ff() pf_gc ()

and is used to change f(t — pAtg), as follows (see Figure 2.6):
fe(t — peAty) — fo(t) — (fz(t) — fe(t — PtAtl)) — fee(t) (2.70)

The logic behind this form of correction stems from an observation that in general fo(t) — fe(t)
is (in a loose sense) proportional to £, — £; i.e. the more levels over which the elliptic equations
are re-solved, the larger the change in the interior, finer level ¢, whose boundary conditions have
essentially been evolved via extrapolation in the interim between re-solves over the larger domain
of level £,. Thus, if in hindsight, the quantity (2.69) had been added to f at each one of the pf ¢
intermediate time steps between re-solves over levels £...¢f, then (2.69) would be zero at time ¢
(ignoring, of course, the effect that this putative correction would have had on the solution).

This extrapolation technique is rather ad-hoc, though both the choice of which past times to
extrapolate from, and the use of corrections, play a significant role in the stability of the adaptive
evolution code. It would be interesting in the future to investigate higher order extrapolation
schemes (earlier experiments with fourth order extrapolation, involving the four most recent time
steps, was unstable—possibly synchronizing the times used for extrapolation with coarser level
times would help here too, as it did with linear extrapolation).

Lastly, with regards to the extrapolation, note that on the finest level we do solve the elliptic
equations within the Crank-Nicholson iteration, as in the unigrid case. Here the extrapolation

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 54

for (requested number of coarse steps)
call single_step(level 1)
stop

end

subroutine single_step(level L)
if regridding time(L) then
regrid from levels L to Lf
end if

for evolved variables: if (L>1) then set boundary conditions along
AMR boundaries at time t(L)+delta_t(L) via interpolation from
level (L-1)

for MG variables: extrapolate the entire grid function to time
t(L)+delta_t(L) from earlier-time solutions at level L

repeat until (residual norm < tolerance):
1: if (L=Lf) then perform 1 MG vcycle on elliptic variables
at time t(L)+delta_t(L)
2: perform 1 iteration of the Crank-Nicholson sweep for all evolved
variables
end repeat

t(L)=t(L)+delta_t(L)

if (L<Lf) then
1: repeat [rhot=delta_t(L)/delta_t(L+1)] times: call single_step(L+1)
2: compute the TRE for level (L+1) by comparing the solutions
in the region of overlap between levels L and L+1
3: inject the solution from level L+1 to level L
in the region of overlap between levels L and L+1
end if

if (L=1 or (L<Lf and t(L)'!'=t(L-1))) then
1: re-solve the elliptic equations over the sub-hierarchy from
levels L to Lf
2: compute the correction to the MG-variable extrapolation functions
end if

return from subroutine
end of subroutine single_step

Figure 2.5: A pseudo-code representation of the Berger and Oliger time stepping algorithm, as
modified and implemented in our code. Note however that the actual code is written
in Fortran 77, hence the recursion is manually implemented using stacks.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 55

Step 1: Extrapolate prior to CN iteration 0

fe(t —4At)

Step 2: Solve MG equations after CN iteration

: : ; : | -
t —4At t — 3At t—2At t— At t

I for(t) = L0 10

fe(t)

| | | | |

\ \ \ \ \ —
t —4At t — 3At t— 2At t— At t

/.
Step 3: Apply correction —="
=7)
corrected f,(t — 2At) ////
= fe(t) —v = fee(t) ="

: : : : : -

t —4At t — 3At t —2At t— At t t+ At

Figure 2.6:

An illustration of the technique we use to extrapolate and solve for elliptic variables
within the AMR framework. In this example, we show the evolution of an elliptic
variable f; from t — At to t, assuming that p, = 2 and £ < {;. Initially (step 1),
fe at t is calculated via linear extrapolation from data at past times ¢t — 2A¢ and
t — 4At (quantities used for extrapolation are depicted by boxes in the diagram).
This value, labeled f;(t), is used during the Crank-Nicholson (CN) iteration of the
evolved variables. At time ¢, we assume levels £ and £, = ¢ — 1 are in sync, and so
after the CN iteration (and after the equations on finer levels £ + 1..£; have been
evolved to t) we re-solve the elliptic equations over levels £...¢¢ (step 2). This results
in a change in the value of f from fy(t) to f¢(t) (for simplicity we assume that a
similar change that occurred at time ¢ — 2At is zero). This change is propagated back
to t — 2At, so that the same velocity v, modulo a correction f.o(t), will be used to
extrapolate f to ¢t + At (step 3). Here, since £ — £, = 1, the correction is such that
we are effectively extrapolating from ¢t — 4At and ¢ to time ¢ + At; this would not be
the case otherwise—see (2.69-2.70). (If £ = £, then the elliptic variables are solved
within the CN iteration, and the value obtained afterwards is used for fy(t).)

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 56

simply serves to set the boundary conditions.

2.3.2 Multigrid on an Adaptive Hierarchy

The extension of the basic MG algorithm (see Section 1.5.6) to a grid hierarchy is rather straight-
forward in concept. Figure 1.3 shows a typical AMR hierarchy over which we want to solve a set
of elliptic equations using MG. To simplify the process, we require that ps be an integer power of
two; then the AMR hierarchy can easily be extended to incorporate the MG levels, which have
a refinement ratio pmg of 2:1. When building the MG hierarchy, each AMR grid is individually
coarsened by factors pmg until either a) one dimension of the grid is smaller that the minimum
allowed, or b) the coarsened grid can be absorbed into a larger grid at that level in the MG
hierarchy.

The V-cycle proceeds in essentially the same manner as before—the pseudo code shown in
Figure 1.5 can be read verbatim, the only “modifications” being the manner in which several of the
statements in the listing are applied. First, inter-level operations, such as restriction, computing
coarse-grid corrections, etc., are only performed in the region of overlap between the two levels
(which is always the region of the fine level, given the kind of hierarchies that are produced by
B&O AMR). Second, the manner in which the relaxation sweep proceeds over a level is modified, to
account for possible grid overlap and AMR boundaries, as follows. During the relaxation sweep, the
variables at a given coordinate location and level are relaxed only once, regardless of the number
of grids encompassing that location. This is necessary to preserve the smoothing properties of the
relaxation scheme. We use a mask function to enforce this single update per grid point. The mask
is initialized to zero on all grids in the level prior to the relaxation sweep. Then, a sweep is applied,
in turn, to each grid in the level, though only variables at points where the mask is equal to zero
are modified. After the sweep is done on a given grid, the mask is set to one throughout that grid,
and the mask and other grid functions are copied to overlapping grids at the same level. Therefore,
subsequent relaxation sweeps on adjacent grids skip over points that have already been relaxed.
This communication step, in addition to enforcing a single update per point, ensures that grid
functions are numerically unique at all physical grid locations'2?, which is important for preserving
the V-cycle’s convergence properties. Also, though we use Dirichlet boundary conditions at AMR
boundaries, the communication ensures that points interior to a union of grids are always treated
as interior by the end of the V-cycle, even if they lie on the boundary of some grid in the overlap
region.

With regards to the performance of this MG scheme on a general adaptive hierarchy, there
are two situations of relevance where performance could suffer, compared to the single grid MG
algorithm. The first occurs when, at some level down (coarser) in the MG hierarchy, one or more
grids in a connected union of grids is a “coarsest grid”, and hence needs to be solved “exactly”
— see Figure 2.7. Experimentation showed that the entire union needed to be solved exactly in
that situation; i.e. it was not sufficient to solve the equations exactly on the coarsest grids, then
proceed down the V-cycle on the remaining grids. If the union of grids consists of a relatively
small number of grid points, then such a situation will not be a problem; otherwise, there will be
a significant slow-down of the algorithm, for the speed of relaxation suffers dramatically as the
number of unknowns increase. For the physical scenarios discussed in this thesis, we found that
single, isolated clusters (see Section2.3.3) were efficient in covering the regions of high truncation
error, and so avoided this problem.

The second situation where performance suffers is when the TRE requires long, skinny rectan-
gular regions to be refined. This does occur with the more prolate initial data configurations that
we have studied. What happens in this case, is that such an elongated grid can not be coarsened
very much along the larger grid dimension before the smaller dimension has reached the smallest

12Note that we also perform such a communication step after relaxation of evolved variables, during the Crank-
Nicholson iteration.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 57

T T T T T T
| [| [| [| [| 2
| | | | | | | | |
F-——+-——+-——-t--A-— - — === - T ; T ; T
| ! | ! | ! | | | | | | |
| ! | ! | ! | | | i | i |
i e Bl el b e i i -t -t Ty TT T
| | | | | | | | | | | | |
| ! | ! | ! | | | | | | |
S e e e R I e i I S
| ! | ! | ! | | | | | | | 3
| ! | ! | ! | | | | | | | g
| |
| | | | | | | | | : | : :
R R Rk S A
| |
| | | | | | | | | : | : :
e Y
| | | ! | | | | | | | |]
| ! | ! | ! | | | X | X |
| | | | | ! | | | - | N |
L A A R I [f”"’T”"’T”’
| ! | ! | ! | | | | | | |
| ! | ! | ! | | | N | X |
[R A L e e ety R
| | | | | | | | | | | | |
| ! | ! | ! | | | | | | |
e S e R e B ey
| | | | | | | ! |
| ! | ! | ! | ! |
e e e e el e et S
| ! | ! | ! | ! |
| ! | ! | ! | ! |
! ! ! !

Figure 2.7: A hypothetical MG grid configuration that will adversely affect execution speed.
In the figure we depict three grids, g1,g2 and g3, several levels down in the grid
hierarchy (i.e., after several coarsening steps have already been performed). Grid
g3 cannot be coarsened any further, while grids g1 and g2 can, and ideally should
be coarsened further, to maintain the speed of the algorithm. However, because g3
overlaps the other two grids, this entire level must be considered a coarsest level, and
solved “exactly”.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 58

allowed size. Again, this results in a relatively large number of grid points where the solution needs
to be obtained exactly. As of yet we have not addressed this problem, accepting the slowdown that
occurs. A possible solution may be to use line relaxation; however, because we simultaneously solve
for several variables per grid point, the resulting linear system would be represented by a banded
matrix, the solution of which may not be much faster than the current point-wise relaxation.

2.3.3 Clustering

We have incorporated two clustering routines into the code. The first, written by Reid Guenther,
Mijan Huq and Dale Choi [109], is based upon the signature-line method of Berger and Rigoutsos
[73]. The second is a simple routine that produces single, isolated clusters—each isolated region of
high TRE is surrounded by a single cluster, and then all clusters within a certain distance of each
other are merged together into an encompassing cluster. For the specific problems that we have
studied so far, the isolated cluster method turns out to be almost as efficient as the signature-line
method. Therefore, since efficiency is not an issue, the isolated cluster method is preferable, because
it avoids one of the potential speed-bottlenecks of the MG algorithm discussed in Section 2.3.2;
furthermore, as we mention in Section 2.3.7, minimizing cluster overlap helps reduce high-frequency
noise problems.

A clustering issue that needs to be dealt with in our code is that the resultant grid hierarchy
must be acceptable by the MG solver. This places two restrictions on cluster sizes and positions.
First, an individual grid must have dimensions that can be factored into Zmin2"™, where Zmin is
one of the smallest, allowed grid dimensions, and n is a non-negative integer. Second, if several
grids overlap, then their relative positions must be such that the common grid points align on all
possible levels of a MG hierarchy. Specifically, if a union of overlapping grids can collectively be
coarsened m times in the MG hierarchy, then the relative offsets of grid origins on the finest level
must be multiples of 2™ grid points. We have decided to enforce these requirements after the initial
clustering algorithm is applied, by modifying the returned cluster list accordingly. This gives us the
flexibility to experiment with different clustering routines, whether or not they produces clusters
compliant with the MG solver.

We have also decided to implement several additional options in the post-clustering routine.
Two of these are adding “ghost zones” between adjacent clusters, so that both the MG and evolution
relaxation sweeps correctly solve the system of equations in a domain given by the union of grids
at a given level; and optionally moving or shrinking clusters, if necessary, to prevent them from
touching parent boundaries '3, which helps to avoid instabilities that occasionally occur in such
situations.

2.3.4 Truncation Error Estimation

The truncation error estimate is computed as described in Sections 1.5.5 and 2.3.1. Here we list
the specific calculation and set of variables used. Depending upon the problem, one or more of v,
®, Ilp, Q, and & are used in the calculation (i.e., all evolved quantities—4) is not used when the
Hamiltonian constraint is used to solved for 1). Optionally, the truncation error estimate is scaled
by the norm of the function if the norm is larger than some constant k (k = 1 currently); we also
multiply the corresponding TRE by a power of p if necessary, chosen heuristically to counter either
the asymptotic or near-axis behavior of the particular function. The TRE for a function f; at level
£ is thus defined to be

_ (fe=fee1)p?
Ts(f() - max(k, ||f€||2)7 (271)

131n principle this should never occur if one adds a buffer zone about the region of high truncation error. However,
because of the grid shuffling performed to obtain a hierarchy acceptable to MG, a grid could be extended to touch a
parent boundary. With the option enabled to prevent this, the grid will be reduced rather than extended to fit into
the MG scheme. This comes at the expense of not obtaining “optimal” zones about the region of high truncation
error.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 59

where it is implied that f; is only defined in the overlap between levels £ and ¢ — 1, f; is restricted
to the resolution of level £ — 1 prior to subtraction, and the result is then interpolated back to
the resolution of level £. Typically, we choose p = 2 for , p = 1 for &, and p = 0 for the other
variables. The TRE for the level is defined to be

75(€) = \V ZTS(ff)za (2.72)

where the sum is taken over the desired subset of variables listed above.

Optionally, the TRE calculated in (2.72) is further smoothed (using simple averaging over a
5-by-5 square cell of points), and/or scaled by a quantity Hy > 1 in the region of overlap between
levels £ and ¢ + 1. H, therefore provides a kind of “hysteresis” to the truncation error estimation
process: when the TRE in a region of level £ grows above Tiyax, that region is refined; however, for
the region to be unrefined at a later time, the TRE needs to drop below Tmax/Hy there. In most of
the simulations we keep H; = 1, though occasionally it has proven useful to set it to around 5 — 10.
In one situation, this prevented apparent erroneous unrefinement in a region where it appeared as
if the lapse function @ may have been the dominant source of solution error, yet for a short period
of time this fact was not reflected in the TRE computed from the evolved variables.

2.3.5 Interpolation and Restriction Operators

Here we state the restriction and interpolation operators used in the AMR code. Straight-injection
is used to restrict a fine grid to a coarse grid during the injection phase of the AMR algorithm, and
when computing the TRE. A fourth order interpolation scheme is used to initialize newly refined
fine grids (or regions thereof) from the encompassing coarser grid. The scheme proceeds by first
interpolating every row of the coarse grid to the fine grid (i.e. every psth row of the fine grid is
filled in), then all the remaining points on the fine grid are computed via interpolation, column-
by-column. The adaptive MG routine uses the same set of operators as the unigrid MG routine,
namely half-weight restriction when transferring from a fine to coarse grid, and linear interpolation
for the opposite.

2.3.6 Initializing the Grid Hierarchy

Here we list the steps currently used to initialize the grid hierarchy.

1) The first two levels (the “coarsest” desired level 2, and its shadow level 1) are initialized with
the freely specified data; then the constraints and slicing condition are solved on these two levels.

2) One step of the AMR evolution algorithm is taken, thus evolving the hierarchy to t = At;.
For the first couple of time steps per level, only first order extrapolation of the MG variables is
performed, as earlier time information is not yet available.

3) A regridding step is performed, based upon the truncation error estimates calculated during
step 2). t is then reset to 0, the new hierarchy is reinitialized with the free data, and the constraints
and slicing condition are re-solved. Steps 2) and 3) are repeated until the number of levels in the
hierarchy stops increasing after the regridding step, or the maximum allowed number of levels is
reached.

4) Now that the initial grid hierarchy has been determined, we initialize the grid functions for
elliptic variables at retarded time levels t, = —p;Aty, required for extrapolation (see Section 2.3.1),
as follows. We evolve the hierarchy one coarse step At; forwards in time, then one coarse step
backwards in time, returning to ¢ = 0. After this, the grid functions at times ¢t = p;At, (stored
as “past” times because of the backwards evolution) and ¢ = 0 are used to linearly extrapolate to
t = —pAty. (Alternatively one could first evolve backwards then forwards in time by one coarse
step, however the results would essentially be the same due to the fact that we are using linear
extrapolation).

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 60

Interpolation Method

T_. H—e——e—f-=H
¢ @ [l (1) linear in time from parent grids
i K X il
» » B (2) 4tk order in space using points from (1)
i il
s n ® (3) 4t order in space using a point from (1) or (2)
i gl and 3 interior points normal to the boundary
[N X (4) as (3), though utilizing points in (3) instead of
B ¥ % o interior points
? @ 0 (5) bilinear in space using points from (1) and (4)
D M - m

Figure 2.8: An illustration of the interpolation method used for @ and Q during AMR evolution.
In the figure we assume that the spatial refinement ratio is 2 : 1, and that all four
grid boundaries are AMR boundaries. Points labeled by (1) and (2) are set once prior
to the Crank-Nicholson (CN) iteration, while points labeled by (3), (4) and (5) are
reset after every CN step (see the pseudo-code in Figure 2.9). Points not explicitly
labeled are “interior” points, and are evolved.

2.3.7 Controlling High-Frequency Grid-Boundary Noise

An issue that needs to be dealt with in a Berger & Oliger style AMR scheme is controlling high-
frequency noise that may occur at parent-child grid boundaries. For a second order accurate
finite-difference scheme, the second derivatives of grid functions are typically not continuous across
the boundaries after child to parent injection. This potential source of high-frequency noise on
the parent level is rather efficiently eliminated by the Kreiss-Oliger dissipation filters that we use
during evolution.

In certain situations we find that high-frequency noise also develops on child grids, within a grid
point or two of the AMR boundary (in particular near the corners of the grid, or places where two
grids overlap). This noise is not so easily dealt with, as the Kreiss-Oliger filter acting normal to the
boundary is only applied a distance three points and further away from boundary. The source of this
noise appears to be the parent-child interpolation scheme used to set the boundary values, and in
general the interpolation method must be tailored to each variable in order to reduce the noise to an
acceptable level. We use the following interpolation method. For all evolved variables (&, Q, ®, ITp
and 1) we use linear interpolation in time from the parent level to set boundary values on the child
grid at points coincident with parent grid points. This is followed by fourth-order interpolation in
space (as described in Section 2.3.5) for the remaining boundary points. Furthermore (see Figures
2.8 and 2.9), after each step of the Crank-Nicholson iteration we reset { and & in a zone two grid
points in from AMR boundaries with values obtained either 1) by fourth order interpolation using
function values from the boundary and three additional points inward from this zone, or 2) via
bilinear interpolation at “corner” points, i.e. those points that are a single cell width away from
two boundaries. This technique for and © was discovered after quite a bit of experimentation
with different interpolation schemes, and is quite effective in reducing the level of noise at the grid
boundaries.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 61

subroutine interp_interior_AMR_bnd(grid function f[1..Nrho,1..Nz])
for i=3 to Nrho-2 do
£(1,2)=0.4x£(1,1)+2.0%£(i,4)-2.0%£(1i,5)+0.6%f(1,6)
£(1,3)=0.1x£(i,1)+2.0%£(i,4)-1.5%£(i,5)+0.4*f(1,6)
f(i,Nz-1)=0.4*f (i,Nz)+2.0%*f (i,Nz-3)-2.0%f (i,Nz-4)+0.6%f (i,Nz-5)
f(i,Nz-2)=0.1%f (i,Nz)+2.0%f (i,Nz-3)-1.5%f (i,Nz-4)+0.4*f (i,Nz-5)
end do

for j=3 to Nz-2 do
£(2,j)=0.4*£(1,j)+2.0%f(4,j)-2.0%£(5,j)+0.6*£(6,])
£(3,j)=0.1%f(1,j)+2.0%f(4,j)-1.5%£(5,j)+0.4*x£(6,7)
f (Nrho-1,j)=0.4*f (Nrho,j)+2.0xf (Nrho-3,j)-2.0*f (Nrho-4,j)+0.6*f (Nrho-5, j)
f (Nrho-2,j)=0.1*f (Nrho, j)+2.0*f (Nrho-3,j)-1.5*f (Nrho-4, j)+0.4*f (Nrho-5, j)
end do

£(2,2)=(f(1,1)+£(3,3)+f(1,3)+£(3,1)) /4

f (Nrho-1,2)=(f (Nrho, 1) +f (Nrho,3)+f (Nrho-2,1)+f (Nrho-2,3)) /4
£(2,Nz-1)=(£ (1,Nz)+f (3,Nz)+f (1,Nz-2) +f (3,Nz-2)) /4

f (Nrho-1,Nz-1)=(f (Nrho,Nz)+f (Nrho ,Nz-2) +f (Nrho-2,Nz) +f (Nrho-2,Nz-2)) /4

return from subroutine
end of subroutine interp_interior_AMR_bnd

Figure 2.9: A pseudo-code description of part of the interpolation method used for & and) during
AMR evolution. For simplicity, in this subroutine we assume that all four boundaries
are interior to the computational domain boundaries. The set of points altered here
correspond to (3), (4) and (5) in Figure 2.8, and the interpolation operators used
are independent of the spatial refinement ratio (as opposed to points (1) and (2) in
Figure 2.8).

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 62

For the MG variables («a, 37 and %), prior to a Crank-Nicholson evolution cycle we reset these
variables on AMR boundaries at points unique to the grid (in between points coincident with
parent level points—those labeled by (2) in Figure 2.8) using fourth order interpolation from the
remaining points on the boundary. Thus we overwrite the values set by coarse-grid corrections
(CGCs) during the most recent MG solve that involved coarser levels. The reason we do this is
as follows. In MG, CGCs typically introduce high-frequency noise on the finer level, while the
subsequent post-CGC relaxation sweeps smooth out this noise. However, since no relaxation is
applied on AMR boundaries, some form of explicit smoothing is required — the above described
fourth order interpolation provides this smoothing mechanism.

Another stage in the algorithm where high-frequency noise can creep into the solution is during
the regridding phase, if the refined region on a given level expands. Then, within the part of
a new grid overlapping the old refined region, grid functions will be initialized by copying data
from an old fine grid, while on the rest of the new grid the grid functions will be initialized via
interpolation from a parent grid. Sometimes, at the interface between the copied/interpolated
data, tiny discontinuities are introduced. Fortunately, the grid functions are easily smoothed by
applying a Kreiss-Oliger filter to them (at all time levels) after regridding.

2.3.8 Dealing with Multigrid Failures

Occasionally during an evolution, predominantly of strong-field gravitational wave spacetimes,
the MG routine “fails” in some fashion. A failure is either an instability, where a grid function
diverges at some point, or MG fails to converge to within the desired tolerance after a specified
number of time steps. Often, these failures can be cured, by first restoring the grid functions to
the values they had prior to the failure, and then adjusting some parameter within the algorithm
before attempting to re-solve the elliptic equations. Here, we briefly mention some of the specific
problems, and adjustments that relieve them. However, even with these fixes, the MG routine is
still not robust enough to study critical collapse of gravitational waves.

The residual is often large and near-discontinuous in the vicinity of a child-grid boundary on
the parent level. This rarely causes problems, though when it does, simply increasing the number
of pre-CGC and post-CGC relaxation sweeps fixes the problem.

Occasionally, a low-frequency oscillation develops in the residual, where, even though the mag-
nitude decreases somewhat, the overall sign of the residual flips from one V-cycle to the next. This
adversely affects the rate of convergence, and in extreme cases can cause the residual to diverge. In
most cases, an effective cure is to weight the restricted residual by a factor w < 1 when proceeding
down the V-cycle, and then weight the coarse grid correction by a factor of 1/w when proceeding
up the V-cycle'*. We find that values of w between 0.9 and 0.95 work well.

Sometimes the relaxation becomes unstable (usually when one of the source functions, such
as Q, becomes very large in magnitude). If this occurs on a coarser level in the MG hierarchy
(coarser than the coarsest level in the AMR hierarchy), we simply truncate the V-cycle prior to the
offending level. This can result in a significant slow-down of the code if the truncation needs to be
maintained for many time steps. An alternative that sometimes works for this problem, without
slowing down the code, is to smooth the source functions on the coarser levels. We have not
fully explored this second alternative yet, for in principle, the source functions can be drastically
altered on coarser levels, without affecting the desired solution of the problem on the fine level.
This is because the truncation error added to the right-hand-sides of the differential operator on
coarser levels will compensate for such changes (1.82). One might at first think that altering source
functions would only be transferring any irregularities in them to the right-hand-sides. However,
the source functions are smooth on the finest levels, and they only become irregular after possibly
dozens of coarsening operations during a V-cycle. Early positive results obtained when smoothing
source functions suggest that “manipulating” them further, in some fashion, may be a promising

14 This parameter first appeared in Hackbusch’s multigrid method [110].

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 63

| | @ah —on | azn—on | aaMR —0n || Bah — @8n | P2n— Pn | Pamr — Pn |
T Tl | 22404 | 32065 3.550-5 5.83c5 | 1.06e-5 9.830-6
" Tlew | 834e3 | 1633 3.34e-4 31303 | 1.24cd 2.0d0-4

Table 2.1: AMR code test: {5 and £, norms of the data shown in Figures 2.11 and 2.12.

route to achieving robust relaxation on coarser levels.

2.3.9 Convergence, Consistency and Mass Conservation Results

In this section we present two tests of the AMR code, similar to those presented in Section 2.2.7
for the unigrid code. In the first example, we compare the results of a strong-field AMR evolution
to that of a similar unigrid evolution. In the second example, we do a convergence test of an
AMR evolution, by recording the grid hierarchy at the lowest resolution, then using the exact same
hierarchy for runs at double and quadruple the resolution.

Comparison with a Unigrid Evolution

First, we compare an evolution obtained with the AMR code to a unigrid evolution, where the
entire unigrid mesh is given the resolution h of the finest level in the AMR hierarchy. To gauge
how well the AMR solution approximates the unigrid one, we also compare the unigrid solution
to that obtained with two additional unigrid runs, with resolutions of 2h and 4h. In principle, we
could force the AMR solution to agree with the h-unigrid solution by setting the maximum allowed
TRE to 0; however, that defeats the purpose of AMR.

For this example, we evolve a spherically symmetric, time symmetric scalar field spacetime,
in the strong-field regime (the lapse « attains a minimum of around 0.05 during evolution; in
the second comparison below, we look at less symmetric, though weaker initial data, and also
demonstrate what happens when the energy disperses). We initialize ® using (2.52), with A = 0.23,
Ry =0, A =10, e=1and (po,2) = (0,0); and set Iy, Q and & to zero initially. The outer
boundary is at pmax = Zmax = —Zmin = 10. The initial ADM mass of the spacetime is around 0.37.
We set the maximum value for the TRE at 10™* (using only ® and Il in the calculation). The
resolution of the base grid (level 2) is set to 65 x 129, and we use p; = 2. The evolution of the
AMR code was stopped at t = 2.34, by which time the hierarchy was 5 levels deep—see Figure
2.10 below for a plot of a then. Therefore, for the unigrid comparison runs, we used resolutions of
513 x 1025 (h), 257 x 513 (2h) and 129 x 257 (4h).

Figure 2.11 contains plots of the differences in «, between the 4h and h, the 2h and h, and
the AMR and h solutions at ¢ = 2.34. Figure 2.12 is a comparison plot of ® (similar results are
obtained when examining other variables in the problem, and for brevity we do not show them
all). The essential information on these plots is summarized in Table 2.1. One can see that the
AMR evolution, in general, gives comparable or better performance than the 2h unigrid solution,
compared to the A solution.

AMR Convergence Test

To examine the bevahior of the AMR code in a more dynamical situation than the previous example,
and at resolutions unattainable by a unigrid code, we do the following convergence test of an AMR
evolution. We run a simulation with a given set of parameters (including a modest level for the
maximum allowed TRE), and during the run, after each regridding phase, we record the grid
hierarchy produced. The resultant data, which we label with h, becomes the lowest resolution
data for the subsequent convergence test. For the higher resolution runs—h/2 and h/4—we re-run
the code using the previously recorded grid hierarchy, except that each grid in the hierarchy is

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 64

Figure 2.10: AMR code test: a at t = 2.34, showing the AMR hierarchy and mesh structure.
The data in the figure has been coarsened by a ratio of 4:1, to give a clearer view of
the meshes. The height of the surface represents the magnitude of a, and the origin
p =z =0 is coincident with the minimum in a (of = 0.14).

given double the resolution for the h/2 run, and quadruple the resolution for the h/4 run. The
higher resolution runs will not have an “ideal” grid structure as computed by local truncation error
estimates, however, as the grid hierarchies are identical for the three runs, it becomes feasible to
do a direct, point-wise comparison of the results.

In this example, we consider non-trivial initial data for all of the four, freely specifiable variables:
®,1,Q and 6. We initialize ® using (2.52), with A = 0.025, Ry = 3, A = 1.0, ¢ = 1 and
(po, z0) = (0,0). T is initialized as described in Section 2.2.3 to give approximately ingoing waves
at t = 0. &/p is also initialized using (2.52), with A = —0.01, Ry = 3, A = 1.0, e = 1 and
(po,20) = (0,0.3); as is Q/p, with A = 0.01, Rp = 3, A = 1.0, e = 1 and (pg, 20) = (0, —0.3). The
outer boundary is set t0 Pmax = Zmax = —Zmin = 48, and the base level (2) has a resolution of
49 x 97 grid points. The Courant factor A is set to 0.15, and we only present results of the evolution
up to t = 24 (as we wish to focus upon AMR-specific aspects of the code—the AMR code uses the
same boundary conditions as the unigrid code, and we would see the same rather poor behavior
after waves reach the outer boundary at ¢t ~ 48). We use free evolution for 7. The maximum TRE
is set to 1073, which results in a set of levels versus time as shown in Figure 2.13 below. The finest
level (6) of the h/4 run has an effective unigrid resolution of 3073 x 6145, making it impractical
to do a comparison as in the first example above. The smallest features in the solution develop
at around ¢t = 3 — 6, in the vicinity of the origin, and consequently the AMR hierarchy is deepest
then. After ¢ ~ 10, essentially all of the radiative fields have left the vicinity of the origin, and are
traveling towards the outer boundary.

Figure 2.14 shows the total ADM mass of the spacetime (we integrate (2.67) on the surface
given by pmax = Zmax = —2Zmin = 43 for this simulation). Figure 2.15 contains plots of E(K ,”) and
E(K,?)—the £5 norms of the residual of the evolution equations for K, and K,* respectively(2.66).
Figure 2.16 shows plots of the convergence factor (1.55) for three representative variables: 2, ¢ and
a (to demonstrate the effectiveness of our delayed-solution scheme for elliptic variables). When

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 65

o
e
gl
s 3

;

A
o
S

S
el y s o,

::mmw»#m’g

Figure 2.11: AMR code test: comparison of « to a unigrid evolution, at t = 2.34. The top figure
shows the difference between the h and 4h unigrid solutions, the middle figure shows
the difference between the h and 2h solution, and the bottom figure is the difference
between the h unigrid and the AMR solution. The height of each surface represents
magnitude, and the same vertical scale is used for each frame. The mesh-lines shown
are for visual aid only, and do not reflect any computational mesh structure. The
largest differences are in the vicinity of the origin, p = z = 0.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 66

Figure 2.12: AMR code test: comparison of ® to a unigrid evolution, at ¢t = 2.34. The top figure
shows the difference between the h and 4h unigrid solutions, the middle figure shows
the difference between the h and 2h solution, and the bottom figure is the difference
between the h unigrid and the AMR solution. The height of each surface represents
magnitude, and the same vertical scale is used for each frame. The mesh-lines shown
are for visual aid only, and do not reflect any computational mesh structure. The
largest differences are in the vicinity of the origin, p = z = 0.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 67

calculating the £, norms for Qg, E(K,?) and E(K), we restricted the domain of the calculation
to [0, 15, —15,15], for the corresponding variables are very close to zero outside of this region during
the time of the simulation. ¥ and « are more global in nature, and hence we included the entire
domain in their convergence test calculations.

As demonstrated in these figures, at early times, while the dynamics are unfolding within the
vicinity of the origin, we get very good convergence results. If fact, for the convergence factors
() we obtain numbers higher that the expected value of 4. The convergence factors for E(K,”)
and E(K,?) going from runs h/2 to h/4 are closer to 2 then; the reason for this (compared to the
relatively high reduction in error going from h to h/2) is apparently due to the inconsistency of
the outer boundary conditions (see the discussion in Sections 2.2.6 and 2.2.7), for, as the resolu-
tion is increased, the residual norm starts to be dominated by a lower-frequency component that
encompasses most of the computational domain.

At later times, after most of the energy has left the origin, the convergence figures look quite
bad. The reason appears to be that then, in the vicinity of the origin, the solution for the radiative
variables (such as and ®) is dominated by a low magnitude (=~ 10~* to 10~%) residual “noise”.
The noise is predominantly sourced at parent-child boundaries, earlier in the evolution. Dissipation
eliminates the highest frequency components of the noise, though some lower-frequency components
remain, primarily in Q. There are two factors that appear to be most responsible for the noise
produced in Q at parent-child boundaries. First, the noise decreases as A decreases; this may simply
be because the linear interpolation used to set the boundary conditions becomes more accurate as
A decreases, though it may also have something to do with the fact that decreasing A improves the
extrapolation of the elliptic variables. In particular, o and (2 seem to be rather strongly coupled,
in that even slight irregularities in the second p derivative of a near outer parent-child boundaries
excites noise in () there. This noise is greatly suppressed by the particular form of smoothing we
apply to , as discussed in Section 2.3.7 (though, of course, there may still be better smoothing
methods that could be applied). Second, the larger the gradient in Q across a parent-child boundary,
the more likely it is that noise will be generated. This source of noise could be alleviated somewhat
by tuning the truncation error estimation scheme (for instance by weighting Q more heavily when
calculating the TRE), so that the resultant grids more completely enclose the regions where the
gradients of 0 are larger.

2.4 Probing the Geometry of a Numerical Solution

Due to the coordinate freedom one has in general relativity, it is often not an easy task to extract
physically relevant information about the geometry of a particular solution. This difficulty is
somewhat compounded in a numerical solution, where the 4D geometry is obtained as a sequence
of 3D spatial slices, and it is a cumbersome task to analyze this data relative to a time coordinate
other than the one used in the simulation. The simplest quantities to analyze are therefore invariant
quantities that do not depend upon a particular slicing. For example, in scalar field critical collapse,
we calculate the maximum value attained by the Ricci scalar during sub-critical evolution, or the
local maxima and minima that the scalar field attains within the oscillation of each self-similar
echo. During gravitational wave collapse, where the Ricci scalar is zero, the extreme values of
other invariants could be monitored, for instance the square of the Riemann tensor:

Rabchade- (273)

Of course, observing a curvature invariant on some “time” t = const. slice, and its evolution
with respect to ¢, is a valid probe of the geometry of the solution, and potentially just as useful as
that of any other time slicing. However, when we want to compare information between different
solutions (if it makes sense to do so), we need to fix some aspect of the slice on which we do the
comparison. In some situations, for instance when measuring waveforms produced in black hole

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY

68

Maximum AMR Level

— DO0OD 0oooo —

B8a8 0oooo —

— 0oooo =

— 000000000000 0O0D0O0GH

0 9 10 15 20

Figure 2.13: AMR code test: depth of the hierarchy as a function of time.

0.112

0.11

M

2
= 0.108
0.106

0.104

7\ T T T T 1 T \‘ T T 1 [\7
- ——_h B
- h/2 .
— — h/4 -
:\ \\r\ ‘ I I ‘ I O ‘\ [\‘ [\7
0 S| 10 15 20

Figure 2.14: AMR code test: Mapas.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY

N
(AN
Lo vy

—
(@)
‘\\‘\\\\‘\\\\4/

?

-
‘\H\‘\H\‘HH

~ —

-
oo
T T[T I T [TITT[TTTT
-
.
)
\
)
~
<
e
-

Q¢
I AV I O & A S N @ R AV RS o))
ARRRRRNERRRREEN

(@)

Figure 2.16: AMR code test: convergence factors.

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 70

collisions, it is sufficient to compare the solutions near the outer boundary of the computational
domain, where one is approaching an unambiguous, asymptotically flat coordinate system. In other
situations, we want to compare quantities in the strong field region of the solution. Specifically, in
the study of scalar field critical collapse in Chapter 3, we would like to measure how close a given
near-critical solution is to the putative universal spherically symmetric solution. As mentioned
above, observing the extreme values of ® and R at the center of self-similarity provides some
information; though this will not tell us how rapidly the asymmetric modes decay, or perhaps if
there are some less “local” features of the solution that do not match the spherically symmetric
one. Therefore, we want to compare entire solutions on a “common” slice. One way to generate
such a slice is to use null geodesics in the following manner. We wait for the evolution to proceed to
some landmark spacetime event within the solution; for instance one of the local extrema attained
by the scalar field during its self-similar echoing behavior. Then, from that point, we send out a
family of null geodesics in all directions (i.e., a lightcone), parameterized by an affine parameter .
The geodesics will then probe a particular slice of the spacetime, and using the angle 6 to label the
initial direction of each geodesic (the azimuthal angle ¢ is redundant in an axisymmetric solution),
we can unambiguously compare invariants of the solutions at common (6, \) coordinates along the
null slice.

In the following section we describe how we integrate null (and timelike) geodesics in the code.

2.4.1 Geodesics

We use the Lagrangian formulation of geodesic motion to arrive at the set of equations we integrate
in the code [111]. We restrict attention to geodesics with zero “orbital” angular momentum, thus
d¢/d)\ = ¢ = 0, where A is the affine parameter along the geodesic, and we define the over-dot to
mean differentiation with respect to A. Hence, in our metric, the Lagrangian takes the form

L = gut® + 2gpupt + 292051 + * (5° + 2°) (2.74)

where, to keep the expressions simple, we have not expanded the g¢, g,: or g.; components of the
metric in terms of «, 8”,* and . The Euler-Lagrange equations of motion, with A an affine

parameter, are
d (0L oL
—(=)-==0, 2.75

dA (6:0) ox (2.75)
where £ = x()\) is one of p()), z(A) or t(N\). Note that when computing the functional derivatives
in (2.75), one considers z and & to be independent variables, yet functions of A.

We are only going to integrate time-like or null geodesics, for which £ is normalized to the
constants —1 and 0 respectively. One can use the normalization condition in lieu of one of the
equations of motion, and we will do so, replacing the ¢ equation from (2.75). We convert the
remaining p and z equations in (2.75) to first order form by defining the following conjugate
variables

oL
Hp = 6_[) s and (2 76)
oL
I, = =. 2.
.= (2.1)

The reason why we have chosen this particular set of conjugate variables, and eliminated the ¢
equation of motion in favor of the normalization condition, is that consequently no ¢ derivatives of
metric functions appear in the resultant set of first order equations. This is a useful property to
have for integration within the AMR code, because, as a result of the method we use to extrapolate
the elliptic variables in the Berger and Oliger algorithm, single time-step finite difference approx-
imations to the time derivatives of these variables have a fair amount of high frequency noise (in

CHAPTER 2. NUMERICAL EVOLUTION IN AXISYMMETRY 71

time).
Finally, to facilitate integration within the code, we change independent variables from A to t.
Representing the derivative with respect to ¢ with a prime, the set of equations we integrate are:

2 2
VI + I — L
I, \
po= 2L¢4 =B, (2.79)
I, \
S = 2;4 e (2.80)
1 2 2
I, = I [gtt,p + 291,00 + 292102 + 4010, (pl +2')] (2.81)
and 1
IT, = I [gtt,z +29pt,20 + 22,2 + 4Pt , (PI2 + 212)] (2.82)

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 72

CHAPTER 3
SCALAR FIELD CRITICAL COLLAPSE

In this chapter we explore critical gravitational collapse of the massless scalar field in axisymmetry.
The results were obtained using our numerical code that incorporates adaptive mesh refinement.

Based upon studies of critical collapse in spherical symmetry, Choptuik conjectured that critical
behavior is universal, and should be observed away from spherical symmetry [4]. This is consis-
tent with the idea that the critical solution is a one-mode unstable solution (see the discussion
in Section 1.3), and perturbative calculations support this claim [26, 27]. To date, however, the
only non-perturbative study of critical phenomena away from spherical symmetry was carried out
by Abrahams and Evans [96], who simulated the collapse of pure gravitational waves in axisym-
metry. They found evidence for a discretely self-similar critical solution, with a scaling exponent
v =~ 0.37, and echoing exponent A = 0.6. Surprisingly, to within numerical error, the scaling ex-
ponent is the same as that of the self-gravitating scalar field, however the echoing exponents differ
significantly, with A & 3.44 for the scalar field. The corresponding critical solutions are markedly
different though—the scalar field critical solution is spherically symmetric, while the gravitational
wave critical solution is intrinsically asymmetric, as gravitational waves do not exist in spherical
symmetry (which is why it is rather surprising that the scaling exponents are nearly the same).

The main questions that we would like to answer in this chapter are: does one observe critical
phenomena at the threshold of black hole formation in the collapse of asymmetric distributions of
scalar field energy, and if so, what is the nature of the critical solution? To this end, in the remaining
sections of this chapter, we present results from the study of threshold collapse of several distinct
initial configurations of the scalar field. First, in Section 3.1, we show results from the collapse
of spherically symmetric initial data. The results obtained are consistent with those observed
in previous critical collapse studies in spherical symmetry (for a comprehensive list of these see
[35, 36]) Furthermore, due to the rectangular computational domain, our 2D code can never exactly
compute spherically symmetric solutions; hence the fact that we can reproduce the 1D results to a
reasonable degree of accuracy is already some confirmation that the critical solution persists with
very small asymmetric perturbations. In Section 3.2 we show the results from slightly prolate and
oblate families of initial data. Again, as close to criticality as we can tune these two families, we find
consistency with the spherically symmetric solution In Section 3.3 we look at initial data deviating
significantly from being spherical symmetry—namely a solution that is antisymmetric about z = 0,
and several highly prolate families of initial data. For the antisymmetric family (discussed in 3.3.1),
we find that two self-similar solutions develop at threshold, separated by some distance along the
axis. Each of the two solutions locally resemble the spherically symmetric solution. However, our
examination of the collapse from highly prolate distributions in Section 3.3.2 suggests that there
may be an additional unstable mode in axisymmetry. As mentioned in the introduction, at late
times, this mode (if not merely an artifact of the initial data) causes the critical solution to bifurcate
into two new, discretely self similar solutions.

Unless otherwise stated, we do not show the grid structure in any of the figures of grid
functions—grid-lines drawn on the plots are for visual aid only. Also, in all of the surface plots,
the height of the surface represents the magnitude of the function.

All of the simulations were run on single nodes of either UBC’s vn cluster, consisting of 850Mhz
PIII processors with 512MB of memory, or on nodes of the MACI Alpha Cluster at the University
of Calgary, which contain DEC Alpha processors ranging in speed from 500-833Mhz, and having
up to 4GB of memory. The most demanding simulations we ran utilized up to 1GB of memory,
and took a few days to complete. We estimate that we have used roughly 150,000 CPU hours over
the past year to obtain the results presented here (a fair portion of which was used during the

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 73

Figure 3.1: Initial profile of ®, for spherically symmetric critical collapse.

developmental stages of the code).

3.1 Spherically Symmetric Initial Data

In this section we present results from the simulation of critical collapse of spherically-symmetric,
time-symmetric Gaussian pulses of the scalar field ®. Specifically, we initialize ® using (2.52)
with e = 1, A = 1 and Ry = 0, and then vary the amplitude A to find the critical amplitude
A*. Figure 3.1 is a plot of one member of this family of initial data. The remaining freely
specifiable variables, IIg, & and Q, are set to zero at the initial time. The outer boundary is at
Pmax = Zmax = —Zmin = 10. For a, ? and %, we use Dirichlet conditions at the outer boundary,
while for ¢ we use the 1/r fall-off condition (A.12). The base grid (level 2) within the AMR
hierarchy has resolution 65 x 129, and we use a spatial refinement ratio of 2:1 (hence the shadow
grid at level 1 has resolution 32 x 64). Up to 22 levels of refinement were used for evolutions closest
to criticality (for an effective unigrid resolution of ~ 6,000,000 x 12,000, 000). We use a temporal
refinement ratio of 2: 1. A few of the other important parameters used for the evolution are: the
Courant factor A = 0.3, the regridding interval is 8, the minimum buffer width is 4, and we use &
and Ilg to calculate truncation error estimates. We have performed two sets of runs, one with the
maximum truncation error, which we call €, here, at 1072, the other with ¢, = 10~

To measure the scaling exponent v and echoing parameter A, we look at the maximum absolute
value attained by the Ricci scalar on axis—max, ¢|R(0, 2,t)|, or Rmax for short—in subcritical
evolutions, as a function of distance from the critical solution in parameter space (as first suggested
by Garfinkle and Duncan [112]). If the near-critical solutions are approaching the spherically

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 74

| —In(m* —7) | Central &/®, [A/A, |

1.191 -0.82 1.01
2.925 1.02 1.00
4.610 -1.00 0.93
6.325 1.01 0.75
7.756 -0.96 —
8.859 1.12 —

Table 3.1: Extremes of the central value of ®, normalized to the expected value &, = 0.426,
in near-critical spherically symmetric collapse (e, = 1072 case). We also list the
normalized values of the echoing exponent A, calculated using the difference in central
proper time between the value listed at a given line in the table and one two lines
further down (note that 7* was chosen to give A/Ag = 1 in the second line of the
table). We use Ag = 3.4. See Figure 3.4 for the corresponding curve of the central
value of ® versus —In(7* — 7).

symmetric one, then we expect the curve of In(R,,x) versus In(A* — A) to approximate a straight
line with slope —2y ~ —0.74, modulated by a small oscillation with period A/2y =~ 4.6. We
estimate the critical amplitude A* by taking the average of the nearest-to-critical super and sub-
critical amplitudes that we have been able to determine. See Figures 3.2 and 3.3 below for such plots
from the €, = 1073 and e, = 10~* evolutions, respectively. We were able to tune the e, = 1073
runs closer to criticality, as a larger TRE results in smaller grids in the AMR hierarchy, and hence
consumes less computer resources?.

A second method to estimate A, and to verify the self-similar nature of the solution, is to plot
the central value of ® versus logarithmic proper time — In(7* —7), where 7 (> 0) is the proper time
of a central observer, and 7* is the accumulation point of the critical solution (see Section 1.3).
In these coordinates, the central value of ®, when in the self-similar regime, is a periodic function
with period A, oscillating between extremes of £&,. Choptuik [4] found a value &, ~ 0.603; in our
case, as we use a different overall scale in the Lagrangian for the scalar field, we would expect this
value divided by v/2, or ®, &~ 0.426. One difficulty that we have in obtaining this data in a trivial
fashion is that, in an evolution tuned close to criticality, accumulated numerical error causes the
center of the critical solution to drift along the axis, away from the coordinate origin p = z = 0.
This drift is very small (around 10~° in z) in absolute terms, however, due to the rapidly decreasing
length-scales that unfold during evolution, the drift eventually becomes large enough that simply
measuring ® at p = z = 0 ceases to give accurate results. Where we measure ® instead then, is
along a timelike geodesic, placed at the origin at ¢ = 0 with zero initial velocity (see Section 2.4.1
for a description of how we integrate geodesics within the code). It turns out that this geodesic
tracks the center of the near-critical solution quite well. Figure 3.4 below shows the results for
the nearest-to-critical solution we obtained with the e, = 1072 case. The largest uncertainty in
the plot comes from guessing what 7* is. We have chosen 7 such that the period between the
first two maxima in ® is roughly equal to the expected value of A, namely 3.4. Then periods
between remaining features of the plot can be checked for consistency with this guess for 7*—see
Table 3.1 for a list of the extremes in the plot, which show reasonable agreement (to within about
1% at intermediate times) with expected results. Certainly, as we do not have a large number
of echos in the solution, we cannot claim a high degree of accuracy in measuring A using this
method. However, here we are measuring A directly, unlike in Figures 3.2 and 3.3, where we use
the hypothesized one-mode unstable nature of the critical solution to obtain a relationship between
the echoing period of the actual solution and that of the “wiggle” in parameter space.

1Recall that the critical solution is self-similar, and so the closer to criticality one tunes, the larger the range of
lengths scales that appear in the solution, which all need to be resolved with a deeper grid hierarchy.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 75

5 T ‘ [] ‘ I ‘ I ‘ [1 |
25 —20 —15 —10
In(A*—A)

Figure 3.2: In(Rmax) vs. In(A* — A) from sub-critical evolution of spherically symmetric initial
data, with e, = 10~3. Each point on the curve represents a single evolution. A linear-
regression line fit to the data is also shown, with slope —2y ~ —.76. We estimate
that the period A /2y of oscillation of the plotted function about this line is ~ 4.3.
Hence, v ~ 0.38, and A ~ 3.3.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 76

14 —

‘ [] ‘ [] ‘ [] ‘ []
—18 —16 —14 —12 —10
In(A*—A)

Figure 3.3: In(Rmax) vs. In(A* — A) from sub-critical evolution of spherically symmetric initial
data, with e, = 10~%. In this case, we estimate that v ~ 0.37, and A ~ 3.3.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 7

0.4
0.2
0
—0.2
—0.4

Central ¢

—In(T"—71)

Figure 3.4: Central value of ® as a function of — In(7* — 7), from spherically symmetric critical
collapse (from the €, = 1072 case). See Table 3.1 for a list of the minima and maxima
of this curve.

Finally, in Figure 3.5 we show several snapshots of ® from the near-critical, e, = 10~2 evolution,
near t = 0 and at times where ® attains a local extreme value (see also Figure 3.17 in Section 3.3.2
for a similar sequence of images). In the plot, we have changed to logarithmic coordinates in r to
better demonstrating the self-similar nature of the solution.

All of the indicators studied above show that we obtain fairly good agreement with prior studies
of spherically symmetric critical collapse—within ~ 1% measuring the extreme values of ®, within
~ 3% the scaling exponent 7, and within ~ 5% the echoing exponent A. In subsequent sections,
when we state that values of ®¢, v or A are “consistent” with the spherically symmetric solution,
we mean that the deviations from the assumed spherically symmetric values are smaller than the
uncertainties just quoted from our simulation of the spherically symmetric near-critical solution.

3.2 Small Deviations from Spherical Symmetry

In this section we present results of critical collapse from initial data with slight asymmetric devia-
tions. The conclusions are that, as close as we are able to tune to the critical solution, we still obtain
results consistent with a universal spherically symmetric solution. Hence, we only briefly show a
few figures and tables, and spend more time in subsequent sections discussing the simulations with
more significant asymmetries.

The two asymmetric families of initial data we consider here are a slightly prolate distribution—
(2.52) with e = 2/3, and a slightly oblate distribution—(2.52) with € = 3/2; all other parameters
are identical to those used for the spherically symmetric results presented in the previous section.
Figures 3.6 and 3.7 below are plots of In(Ryax) versus In(A* — A) for the two families, with the
spherically symmetric family overlaid for comparison, for runs with e, = 1072 and ¢, = 107*
respectively. For the e, = 1073 nearest-to-critical solutions, Figure 3.8 below shows plots of the
central value of ® versus — In(7* — 7) for the three families, and Table 3.2 shows the corresponding
values and times of the extremes in ® for the e = 2/3 and € = 3/2 cases.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 78

t=0.1129 t=3.8715
0 VAR aE B I & T]
SSTEE T ST T
i m| : AR T \
i \ s - 117 \
= A
EnRmuus ’35’:35
t=5.7345 t=6.2600
« \ I I \
{ 1 !
« o \ : |
’ Senmmnnni AR =
t=6.3838 t=6.4132
« I x z I]
« \ : : |
« : \ : \
f " am ™ 1 O i fime {
— - ;‘j——«—_‘—« D‘[:__ 7 i] 2 T
e | | 11 @ ™
+ - :

Figure 3.5: Evolution of ® from spherically symmetric critical collapse. In this plot we have
transformed the grid to logarithm coordinates in r, via (r,0) — (In(r + €,.),6), where
r = /p?+22, tanf = p/z, and €, was set to 10™* to give a reasonable scale for
the figure. Thus the origin of each frame is at » = 10™*, and roughly five orders of
magnitude in r are spanned moving radially outward from the origin.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 79

5\7\\\‘\\\\‘\\\\‘\\\\‘\\\\

25 —20 —15 —10
In(A*—A)

Figure 3.6: In(Rmax) vs. In(A* — A) from sub-critical evolution of near-spherically symmetric
initial data, with e, = 10~2. The curves from the two asymmetric families (see (2.52)
for the definition of €) of initial data have been shifted by constant amounts along
the vertical axis to overlap as much as possible with the spherical data, for easier
comparison.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 80

‘ [] ‘ [] ‘ [] ‘ [] ‘ []
—18 —16 —14 —12 —10
In(A*—A)

Figure 3.7: In(Rmax) vs. In(A* — A) from sub-critical evolution of near-spherically symmetric
initial data, with e, = 10~%. The curves from the two asymmetric families (see (2.52
for the definition of €)) of initial data have been shifted by constant amounts along
the vertical axis to overlap as much as possible with the spherical data, for easier
comparison.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE

81

0.4
0.2

—0.2
—0.4

Central ¢
®

b 8

—In(7"—71)

Figure 3.8: Comparison of the central value of ® versus — In(7* —7), for near-spherically symmet-
ric initial data (e, = 102 case). The curves have been shifted by constant amounts
along the time axis so that the first maxima of ® overlap in the three cases. Table

3.2 contains the times and values of the extremes in ®, for each of these curves.

e=2/3 e=3/2

—In(r* — 1) | Central ®/®; | A/Aq || —In(7* —7) | Central ®/®, | A/Ag
1.127 -0.82 1.02 1.291 -0.82 0.99
2.844 1.02 1.00 2.974 1.02 1.00
4.582 -0.99 0.91 4.664 -1.00 0.95
6.254 1.02 0.74 6.371 1.00 0.78
7.682 -0.96 — 7.883 -0.96 —
8.783 1.05 — 9.027 0.92 —

Table 3.2:

Extremes of the central value of ®, normalized to the expected value &g = 0.426, in

near-critical, near-spherically symmetric collapse (¢, = 102 case). We also show the
normalized echoing exponent A/Ag, calculated as explained in the caption of Table
3.1. Note that as opposed to the data shown in Figure 3.8, we have not shifted the
time values here.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 82

3.3 Large Deviations from Spherical Symmetry

In this section, we present results of critical collapse, starting from initial data that deviates more
drastically from spherical symmetry than that shown in the previous section.

3.3.1 Equatorial-Plane Antisymmetric Scalar Field Collapse

The first significantly aspherical family of initial data that we are going to look at is a configuration
that is antisymmetric about the equatorial plain (or antisymmetric for short)—i.e. ®(p,z) =
—®(p,—2z). Figure 3.10 below is a sample of the initial data that we use for ®. The specific
function is 2G(p, z), where G(p,z) is given (as before) by (2.52), with e = 1, Ry = 3, A = 1,
(po,20) = (0,0) and A is our tunable parameter. We choose IIg such that the scalar field is
initially ingoing (see Section 2.2.3); all the other initial data functions and AMR parameters are
the same as those used for the e, = 1072 spherically symmetric evolution, discussed in Section 3.1.

Recall that one of the characteristic features of the discretely self-similar critical solution is
that the central value of ® oscillates back and forth between some fixed value ®3. Therefore,
one reason to look at antisymmetric collapse is that one may expect that a qualitatively different
critical solution would develop at threshold, for the antisymmetric property of the scalar field is
preserved during evolution, and hence no z = 0 echoing behavior can develop. Surprisingly though,
it turns out that the local solution that unfolds in the antisymmetric case, when one tunes to the
threshold of black hole formation, is the same critical solution as for spherically symmetric initial
data. What happens is the following (see Figure 3.9). For very large initial amplitudes, a single,
encompassing apparent horizon, and hence black hole, forms during evolution. As the amplitude
is reduced, at some intermediate value of A, two distinct black holes form, equidistant from z = 0
(and in fact moving away from one another). As we continue to reduce A towards A*, two local
critical solutions develop away from z = 0. This is how the solution avoids the apparent paradox
of a “central” value of ® that must be zero, while the scalar field still exhibits the spherically
symmetric critical solution.

Figure 3.11 below shows four snapshots of a near-critical evolution from antisymmetric initial
data, demonstrating this behavior. The two echoing solutions that develop equidistant from z = 0
are, to within numerical errors, exactly out of phase; however this is a function of the initial
conditions, and not because of any dynamical link between the two solutions (the critical behavior
unfolds too rapidly for there to be any causal contact). Numerical errors actually prevent us from
maintaining exact antisymmetry during evolution, and thus we can only simultaneously fine-tune
both local solutions to within In(]A — A*|) & —12; beyond that, the black hole/dispersal bracketing
process will “select” one of the two solutions to tune closer to critically, and in this case it was the
one on the positive z axis?. Figure 3.12 is a plot of the late time behavior of the nearest-to-critical
solution that we have obtained, for the z > 0 portion of the scalar field, in logarithm coordinates.

To present more quantitative evidence that the local near-critical solutions are the same as
before, in Figure 3.13 below we plot In(Rmax) vs. In(A* — A) from sub-critical evolutions, and
overlay the results from the spherically symmetric €, = 102 case for comparison. Also, in Table
3.3 we show the local extremes attained by ® during evolution. In the antisymmetric case, we
have not yet been able to trace the local centers of symmetry with geodesics accurately enough
to measure ® as a function of central proper time®; we thus list the extreme values as functions
of coordinate time ¢. In Table 3.3, the values of the extremes of ® do not match the spherically
symmetric values shown in Table 3.1—however, the relative difference between the minimum and

2We can rephrase this more correctly from a numerical standpoint as follows: for a given maximum truncation
error, the antisymmetric family of initial data has two critical parameters, A} and A*, corresponding to the local
solutions that develop above and below z = 0 respectively. With ¢, = 1073, In(|A} — A*|) ~ —12, so while
In(|A — A%|) >~ —12, we can effectively fine tune both solutions simultaneously. Presumably, in the limit as
er = 0, Afi_ will coincide with A* .

3We have not been able to calculate correct initial conditions for the geodesic integration to accurately track the
rapidly moving centers.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 83

}%

0.8
0.6
0.4
0.2

P
\H‘\H‘\H‘\H‘\H

—1 —0.5 0 0.5 1

Figure 3.9: Apparent horizon shapes from super-critical, antisymmetric collapse. The shape of
the apparent horizon(s) first detected during collapse are shown, from five simulations,
each with a different initial amplitude A. Each curve is labeled by In(A — A*). Notice
that for large initial amplitudes, a single AH, and consequently single black hole,
forms. For smaller initial amplitudes, two distinct AHs form; the 2 horizons move
away from each other during evolution and hence do not merge, indicating that the
final state for small amplitude, super-critical collapse contains two black holes.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 84

Figure 3.10: Initial profile of ® for antisymmetric critical collapse.

maximum values attained by ® does approach, at intermediate times, a number consistent with
the spherically symmetric solution. For a massless scalar field, results that differ by a constant are
effectively the same, for only the gradients of ® gravitate (see e.g. 2.21).

3.3.2 Highly Prolate Initial Scalar Field Profiles

In this section, we look at the critical collapse of 4 families of initial data with increasing prolateness:
e =1/2,1/4,1/6 and 1/8 (2.52). The motivation for studying this sequence stemmed from an
early examination of collapse of a family with e = 1/20. There, as in the antisymmetric case,
two black holes formed while still far from criticality (in the super-critical regime), while recall
that for the e = 2/3 case presented in Section 3.2, a spherical-like critical solution was observed.
This suggested that interesting behavior might be seen at some intermediate value of €, where
the transition between one and two black hole solutions occurred. However, as we will show in
this section, it may be that there is an additional, “mildly” unstable mode in scalar field critical
collapse, that will always cause two black holes to form eventually, if some asymmetry is present
in the initial data. In terms of spherical harmonics Yz, this unstable mode has a § = tan~(p/z)
dependence that is closest to an £ = 2 mode (and, of course, m = 0).

All of the simulations results we show in this section were run with parameters identical to the
€, = 1073 spherically-symmetric case discussed in Section 3.1, except with differing values of € for
the initial distribution of ®.

Figure 3.14 shows the ¢t = 0 distribution of ® for the four cases, in addition to the spherically
symmetric case € = 1 for reference. Figure 3.15 shows the scaling of In(Ryax) vs. In(A* — A) for
these families. Except for the e = 1/4 case, and to a lesser extent the e = 1/8 case, the slopes
are consistent with a scaling exponent «y of 0.37. However for € = 1/4 and lower, there is no well
defined oscillation in this curve, and thus we cannot conclude much about the echoing exponent
(other than that in this region of parameter space, this aspect of discrete self-similar behavior is

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 85

Figure 3.11: Evolution of ® from antisymmetric initial data. Only a portion of the computational
domain about the axis is shown, for clarity.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE

86

Figure 3.12: Late-time profile of ®, evolved from near-critical antisymmetric initial data. In
this plot we have transformed to logarithm coordinates in r, via (r,8) - (In(r +
€r),0), where r = \/p2 + (2 — 20)?, tan® = p/(z — 2), and €, = 10~* (thus roughly
five orders of magnitude in r are spanned moving radially outward from the origin
(0,20)). The shift in z by 29 was chosen so that the origin of the figure is coincident
with the center of symmetry of the z > 0 near-critical solution. The barely noticeable
“feature” near the right side of the figure, along the axis, is the z < 0 near-critical
solution, rendered near invisible by the logarithmic transformation. (This figure was
produced from data at ¢ = 12.903, three half-echoes in time later than that of the
last plot shown in Figure 3.11).

[t [Central® 2>0] A®/Ady, 2 >0 [Central &, 2 <0 | AD/Adg, 2 <0 |

6.093 -0.225 0.74 0.225 -0.74

9.673 0.405 -1.03 -0.405 1.03
12.164 -0.476 1.01 0.472 -0.81
12.734 0.382 -1.00 -0.222

12.866 -0.470 0.98 —

12.897 0.366 -0.77 —

12.903 -0.292 — —

Table 3.3: Extremes of the local central values of ® in near-critical antisymmetric collapse. We
also show a normalized central value—A®/Ady—calculated by taking the difference in
® between two subsequent rows, and dividing by the expected difference A®y = 0.852.
We do this to eliminate an (irrelevant) overall displacement in ®. The z > 0 part of
the solution has been tuned closest to criticality, hence we see more self-similar echoes

there.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 87

-\ - Antisymmetric [LD.

-\ —— Spherical LD. .
<0 = N

10 —

O e S AT NN N TN S S N I A N RO
—20 -0 —15 —10
In(A"—A)

Figure 3.13: In(Ryax) vs. In(A* — A) from sub-critical evolution of the antisymmetric initial
data. The curve from the spherically symmetric, €, = 102 case in 3.2 is also shown
for comparison (with the axis of one shifted so that the two curves overlap as closely
as possible).

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 88

not too evident yet). As e decreases, the maximum value of |In(A* — A)| that we have been able
to probe in our simulations decrease, due to increasing computer resource requirements. This is
because the more prolate the initial data, the larger, more elongated set of clusters are needed in
the AMR grid hierarchy to cover the region of high TRE.

Figure 3.16 plots the central value of the scalar field versus logarithmic proper time of a local
geodesic observer (see the discussion in Section 3.1), for the nearest-to-critical solutions that we
have been able to obtain in each case. Here, the deviation from the spherically symmetric solution,
as € decreases, is quite apparent (note that the deviation for smaller values of € is not due to the fact
that we are further from the critical solution in |In(A* — A)| space—additional fine-tuning will not
change the lower-e curves appreciably). What appears to be happening with the smaller € solutions
is that two local centers of “symmetry” are developing. Thus, as we tune closer to criticality, the
echoing behavior begins to unfold away from the origin (and thus away from the central observer).
In Table 3.4, and Figures 3.17-3.22, we present some evidence for this. Table 3.4 shows the local
extremes attained by the scalar field on axis, and the corresponding times and z-coordinates where
the maxima or minima are observed. Notice that for e = 1/6 and € = 1/8, ® still oscillates between
values not too different from the spherical case, however, at some point the position where the
local extreme values occur “bifurcates” into two local extremes, separated by some distance in z.
For the € = 1/6 case, in Figure 3.22 we show plots of the shape of the apparent horizon that is
first detected, from several super-critical evolutions. This also shows the single-to-double bifurcate
behavior as we tune closer to criticality. Figures 3.17-3.21 are surface plots of the evolution of
® in logarithmic coordinates in r, for all five cases of €e = 1 to € = 1/8. The times of the plots
were chosen to coincide with a minimum, maximum, or zero-crossing of the central value of ®.
Note that these plots are only meant to give a qualitative depiction of the supposed instability;
in particular, we cannot dis-entangle slicing or coordinate effects between the solutions, which
would render any quantitative comparison of the profiles of & somewhat meaningless. However,
one invariant statement that we can make is this: for e = 1,1/2 and 1/4, we observe a sequence of
timelike separated, single global minima/maxima in ®; for e = 1/6 and e = 1/8, at early times we
see the same behavior as with the larger €, however at late times (later for e = 1/6 than € = 1/8)
we see a situation develop where ® attains a sequence of global minima/maxima in two, spacelike
separated locations.

An intriguing aspect of this behavior seen in the e = 1/6 and € = 1/8 cases is that echoing
behavior is observed about a single center before it develops about two local centers. For one possible
explanation of multiple, local critical solutions is that they are due to a “focusing” artifact of the
initial data. In other words, it may simply be that the prolateness causes the initial distribution,
when evolved, to focus to two local centers—the closer to spherical the initial data, the closer
the two foci are. However, by the supposition that the critical solution is a one-mode unstable
solution, if one enters a regime where the solution is accurately described as a critical solution
plus perturbations, then any asymmetries in the solution should decay with time, and this includes
a “focusing asymmetry”, where the energy density is slightly peaked in two locations about the
center of the solution (and presumably, early on in the four prolate cases we have looked at we are
in this regime, for we do see at least one cycle of a discretely self-similar collapse). Therefore, one
would expect focusing of the scalar field to local centers, that then undergo gravitational collapse,
to occur before critical behavior is observed there.

If the spherically symmetric critical solution does have a second, aspherical unstable mode,
then eventually we should see a bifurcation develop in all simulations as we tune closer to thresh-
old*. A further intriguing scenario may then develop, if the nature of the unstable mode is such
that the bifurcation results in two, nearly spherical distributions of scalar field energy. For then,
tuning closer to threshold, one should again see critical behavior develop about one of the local

4Including about the z > 0 near-critical solution observed in the antisymmetric collapse discussed in the previous
section; though note that the bifurcation discussed here is qualitatively different from the two-to-one black hole
transition shown for the antisymmetric collapse family in Figure 3.9—there, by construction, we never see any
critical behavior about r = 0.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 89

e=1/2 e=1/4 e=1/6 e=1/8
t <I>ezt/cI>0 t (iezt/(io t <I>ezt/cI>0 t Qezt/q)o
4.488 -0.82 5.555 -0.83 6.504 -0.83 7.383 -0.83
6.634 1.03 8.270 1.01 9.803 0.93 11.314 0.83
7.249 -1.00 9.093 -0.94 10.902 -0.77 12.585 | -0.92(2.7x1072)
-0.92(-2.7x102)
7.394 1.01 9.325 0.94 11.249 | 0.98(6.4x1073) || 13.145 | 0.89(1.2x10 2)
0.98(-6.8x10~3) 0.89(-1.2x10~2)
7.429 -0.96 9.393 -0.83 11.417 | -0.74(2.5x1073)
-0.74(-2.9x10 %)
7.437 0.81 9.416 0.68 11.441 0.45(3.9x1073)
0.41(-4.3x1073)

Table 3.4: Extremes of the central values of &, normalized to the expected value &, = 0.426,
in near-critical prolate collapse. For the e = 1/6 and € = 1/8 cases, two local min-
ima/maxima of the scalar field develop off-center—in those instances we list both
values of the scalar field, followed by the corresponding z location in parenthesis.

centers. This would eventually result in a second bifurcation, as some of the asymmetric unstable
mode would, in general, be present about the new local center. This process could be continued
indefinitely, resulting in a fractal-like cascade of near-spherical critical solutions that unfold at the
threshold of generic, axisymmetric collapse.

On the other hand, if the two centers that form in prolate collapse are due to focusing of the
initial data, and the threshold solution is in fact universal, then further fine-tuning of the prolate
cases should reveal a spherically symmetric critical solution forming about one of the local centers
(again, as with the antisymmetric example, numerical errors will prevent us from fine-tuning both
centers to threshold). Additional resolution will be needed to answer these questions, which may
require that we parallelize the code, or find initial data that demonstrates this bifurcate behavior
without excessive elongation of the resulting grids (which is the primary speed bottle-neck at this
stage with the prolate collapse simulations).

3.4 Sample AMR Mesh Structure

We conclude this chapter by showing a few pictures of the typical AMR mesh structure that
develops at late times in a critical collapse simulation. We use data from the antisymmetric
evolution discussed in Section 3.3.1. Figure 3.23 is a view of the mesh structure at ¢ = 0, and
Figures 3.24 to 3.27 show the structure at ¢ = 12.903 (i.e. at the same time as the plot shown in
Figure 3.12).

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 90

Figure 3.14: Initial profile of &, for prolate critical collapse. The top-most figure is the spherically
symmetric initial data, with € = 1, for comparison; the next four figures, moving
down the page, have e = 1/2,1/4,1/6 and 1/8.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE

91

7T
P

20

15

In(R__.)

10

7

\ \ \ \ 1
I s |

—25

—20

~15
In(A"—A)

-10

v

20

10

—cec=1

c=1/6

L

—25

Figure 3.15:

—=20

~15
In(A"—A)

-10

In(R__.)

20

15

10

20

10

7T
’

L1 | ‘ | ‘ | I ‘ | I ‘ |
—-25 —-20 -—-15 -10
In(A'—A)

i\\ T T 17T T 177 ‘ T 177 ‘ 1T 177

—cec=1
c=1/8

‘/ I ‘ I ‘ I ‘ |

-25 20 -15 -10
In(A"—A)

In(Rmax) vs. In(A* — A) for e =1/2,1/4,1/6 and 1/8 prolate, sub-critical evolution.
The € = 1/2 matches the spherically symmetric data closely, giving v & 0.37 and

A =~ 3.3. For the e =1/4,1/6 and 1/8 cases, the straight dashed-lines fitted to the
corresponding curves give v = 0.31,0.37 and 0.39 respectively; however the periodic
“wiggle” is not very evident in these cases, and so it would be difficult to estimate
an echoing exponent.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 92

04 .
E: 0.2 e/, =
- 0 b]
E -\
G —Ue b =
04 —

)

—In(7"—71)

Figure 3.16: Central value of ® as a function of —In(7* — 7), from prolate critical col-
lapse. The data shown here was gathered from simulations with In|A* — A| =
—28,—28,—25,—20 and —19 for the e = 1,1/2,1/4,1/6 and 1/8 cases, respectively.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 93

t=2.301 t=3.871 t=5.114

t=5.735

Figure 3.17: Near-critical evolution of ® from e¢ = 1 initial data. In each frame we have
transformed to logarithmic coordinates in r, via (r,8) — (In(r + €.),0), where
r = \/p?+ (2 —20)? and tanf = p/(z — 20). € ranges from 4.5 x 1073 at the
earliest time, to 8.0 x 10~7 at the latest time, so that the coordinate range in r cov-
ering the self-similar echoing part of the solution is roughly the same in all frames. 2
was chosen to offset the slight drift in the center of symmetry that occurs with time
(see Section 3.1). The particular times where chosen to coincide with the minima,
maxima and zero-crossings of the local central value of .

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 94

t=2.725 t=4.473 1=5.930

t=6.639 1=7.250

t=7.352

Figure 3.18: Near-critical evolution of ® from € = 1/2 initial data. The same type of coordi-
nate transformation has been applied here as with the e = 1 case in Figure 3.17 for
comparison, and the same criteria was used to choose the set of times shown. Qual-
itatively, there is little to distinguish this sequence from the spherically symmetric
case in Figure 3.17.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 95

BV eS
00 ”A:.A!....

K
by 0
Q]

ose O Sagy.
TG RREL TETE
RSN ""h’!!"’

o““‘&" ’Q"."” A

W

Figure 3.19: Near-critical evolution of ® from ¢ = 1/4 initial data. The same type of coordinate
transformation has been applied here as with the ¢ = 1 case in Figure 3.17 for
comparison, and the same criteria was used to choose the set of times shown. In
this case, the echoing behavior looks similar to that of the e = 1 and € = 1/2 cases in
Figures 3.17 and 3.18, however notice (particularly at the the zero-crossing times of
®, looking at the first oscillation away from the center) that there is a slight growth
in the asymmetry with time.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 96

t=3.750 t=6.492 1=8.702

t=9.798

t=11.129

ST
Nz L e
NI [T
R

a [TTTIXLF

Figure 3.20: Near-critical evolution of ® from ¢ = 1/6 initial data. The same type of coordinate
transformation has been applied here as with the ¢ = 1 case in Figure 3.17 for
comparison, and the same criteria was used to choose the set of times shown. Here,
as in Figure 3.21 for the e = 1/8 case, the echoing behavior that develops off-center
is quite apparent.

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE 97

t=4.265 t=7.316 1=9.969

PR 2

LR

LA LT /2

o e Yy,
LL
X

R
NIRRTy
e, & v,v".'.'ﬁ.’.“i, Ll rrse,
A RN R
i Wbty Ao
A
% :§\~ {J < Vo4

t=12.978 t=13.144 t=13.211

27
SRR RNNARIALL T

AN TR
SO0 bl 1]

27

Figure 3.21: Near-critical evolution of ® from ¢ = 1/8 initial data. The same type of coordinate
transformation has been applied here as with the ¢ = 1 case in Figure 3.17 for
comparison, and the same criteria was used to choose the set of times shown. Here,

as in Figure 3.20 for the € = 1/6 case, the echoing behavior that develops off-center
is quite apparent.

98

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE

NI ERERI RRRNA RRRRUNREE
w ¢ M e — O

c0T xd

1/6 prolate

Notice that for the closest-to-critical case

Figure 3.22: Apparent horizon shapes, as first detected, from super-critical, €

The labels are In(4 — A*).
shown here (In(A — A*) = —22), two apparent horizons are detected.

collapse.

Figure 3.23: & at ¢t = 0 from the antisymmetric scalar field collapse simulation (the same data

as shown in Figure 3.10), drawn with a 4 : 1 coarsened wireframe mesh depicting

the AMR grid hierarchy.

99

CHAPTER 3. SCALAR FIELD CRITICAL COLLAPSE

the same

(

, with a 2 : 1 coarsened wireframe mesh depicting the AMR

® at t = 12.903436 from the antisymmetric scalar field collapse simulation

time as in Figure 3.11)

Figure 3.24:

grid hierarchy. z ranges from —10 to 10 here—see Figures 3.25-3.27 for a series of

close-up views of this mesh structure.

7

, though we have zoomed in

Figure 3.25: The same data is shown here as in Figure 3.24 above

from z ~ —2.5...2.5

by a factor of ~ 4, so that the visible part of the axis ranges
(coincident with the z-bounds of level 4 in the hierarchy).

100

SCALAR FIELD CRITICAL COLLAPSE

CHAPTER 3.

The same data is shown here as in Figure 3.24 above, though we have zoomed in

3.26

igure

F

by a factor of =~ 70, so that the visible part of the axis ranges from z =~ 0.91...1.19

(coincident with the z

solution).

z echoing

bounds of the level 8 grid surrounding the positive-

N

Ny
5 A

Ny

NAR

%r:
a?..ﬁ%ﬁm%

ﬁ&%ﬁr&ﬁrdr‘

The same data is shown here as in Figure 3.24 above, though we have zoomed in by a

3.27

igure

F

factor of =~ 2800, so that the visible part of the axis ranges from z =~ 1.0599...1.0672

(

z echoing

bounds of the level 13 grid surrounding the positive-

coincident with the z

solution).

CHAPTER 4. BLACK HOLE EXCISION 101

CHAPTER 4
BLACK HOLE EXCISION

In this chapter, we briefly include some of the results from unigrid simulations of black hole forma-
tion, showing the excision aspects of the code. In Section 4.1 we show simulations of an initially
prolate scalar field collapsing to form a black hole, and in Section 4.2 we present a simulation of a
black hole collision.

Our main purpose in this chapter is to demonstrate the feasibility of the excision mechanism in
our code, namely, that we can achieve relatively long term, stable evolution of black holes space-
times by applying an excision technique. With regards to obtaining new physical results, the code
is not yet adequate, for two main reasons. First, as discussed in Section 2.2.6, the excision bound-
ary conditions used for 5 and (% are not fully consistent with the equations of free evolution.
As shown in the examples below, the inconsistency is relatively small, producing errors on the
order of the truncation error of the lower resolutions that the code was run at. However, such an
inconsistency still needs to be removed if we want to explore physics with the code. Second, for
the process of perhaps the most interest at this time, namely black hole collisions, the resolution
demands for a unigrid code are excessive. The combined requirements of adequately resolving each
black hole, and placing the outer boundary far enough away to obtain reasonable measures of the
gravitational waves emitted during the collision process, result in desired resolutions several times
higher than what we can obtain with the unigrid code. Consequently, at the current highest prac-
tical unigrid resolution of roughly 3002, the waveform measurements we obtain are significantly
worse (primarily due to reflections off the too-close outer boundary) than those originally obtained
by Smarr [77] more than 20 years ago (and other authors since [78, 79, 80, 81, 89]), using less pow-
erful computers. However, the eventual goal of this code is to study a wide range of axisymmetric
gravitational phenomena, necessitating a more general coordinate system than the “body-fitting”
type of coordinates used by Smarr to attack the specific problem of equal mass, head-on collisions.
Using a more general coordinate system then forces us to implement an AMR scheme to achieve
the necessary resolution for a range of problems (and perhaps more importantly, AMR will allow
us to search for new physical phenomena, where we cannot foresee what the best coordinate system
may be). Therefore, we will wait until we have incorporated excision into our AMR, code, and have
fixed the boundary conditions, before tackling the physics of black hole spacetimes.

4.1 Scalar Field Collapse

In this section, we consider the collapse of a time symmetric, prolate distribution of scalar field
energy. The initial conditions are: ® takes on the form (2.52), with A = 0.32, A = 2, (pg, 20) =
(0,0) and € = 1/20, and Ils = & = Q = 0. We consider two sets of runs, one with the outer
boundary at pmax = Zmax = —Zmin = 40, the other at pmax = Zmax = —2Zmin = 80. We use free
evolution for the conformal factor 7). For the pmax = 40 outer boundary case, we performed three
evolutions, with grid sizes of 65x129, 129x257 and 257x513 that correspond to mesh spacings of
h, h/2 and h/4, with h = 40/64. For the pmax = 80 case, we only have two evolutions, with
grid sizes of 129x257 and 257x513, i.e. with resolutions corresponding to the h and h/2 runs of
the pmax = 40 case; an h/4 run for the pnax = 80 case would have been too computer-resource
intensive. For excision parameters (see Section 2.2.6), we use “frozen” boundary conditions, the
minimum coordinate radius of the excised region is set to 2, and the maximum buffer between the
apparent horizon and excision surface is set to 4, for all cases. We only start excising once the
apparent horizon has been detected; however, if at a later time we “lose” the AH (either the AH

CHAPTER 4. BLACK HOLE EXCISION 102

moves inside the surface of excision, or the resolution is too poor and the AH-finder fails), the
simulation still continues.

Figures 4.1 and 4.2 show several frames of the evolution of & (r® is plotted, where r =
Vp?+ 22), from the 257x513, pmax = 40 case. Figure 4.3 shows the shapes of the apparent
horizon, at the same times as the plots in Figures 4.1 and 4.2, for comparison. Figure 4.4 is a plot
of the ADM mass as a function of time for the different runs, while Figure 4.5 gives an estimate of
the mass based on the apparent horizon area A, from

[A
Myrea = A/ —. 4.1
167 (4.1)

An interesting aspect of highly prolate collapse, demonstrated in Figure 4.4, is that the initial shape
of the AH is nearly spherical. We have noticed this in simulations with the prolateness factor € as
small as 1/200 (2.52). This is consistent with the spirit of Thorne’s hoop conjecture, stating that
black holes with horizons form when and only when a mass M gets compacted into a region whose
circumference in every direction is < 47 M [102].

Figure 4.6 has plots of E(K p”) for the five simulations. The inconsistency discussed in Section
2.2.6 is noticeable in the pmax = 40 plot, where the norm of E(K ,7) for the h/4 run almost doubles
after excision starts (at t = 23.5). A part of the increase can be attributed to the relative closeness
of the outer boundary, however, in the vicinity of the excision surface, the residual does not converge
to zero as the outer boundary is moved further away. Figure 4.7 shows the convergence factor Q)
for ¢, obtained from the pmax = 40 runs (it is unusually high in this case—typically we notice
convergence factors between 2 and 4 in most functions, after excision begins).

Finally, in Figure 4.8, we plot the ADM mass and E(K,?) for the h resolution, pmax = 80 run,
till ¢ = 6000 (or roughly ¢ = 1000M), to demonstrate that we can obtain relatively long term
evolution with excision. We only show a plot for the low-resolution run, as the h/2 run would have
taken too long to complete (we estimate about a month and a half, compared to several days for
the h run). Simulations with excision will not be able to run “forever” though, for, even with ideal
parameters!, the mass of the spacetime slowly decreases due to the dissipation, and eventually the
excision surface will move outside of the apparent horizon, causing a CFL-type instability (though
presumably a set of excision boundary conditions could be devised that will keep the excision
surface within the AH for a longer period of time).

4.2 Black Hole Collisions

In this section we present results from a black hole collision simulation. In contrast to other
simulations of black hole mergers performed to date [77, 78, 79, 80, 81, 103, 104, 105, 59], with
the exception of [89], our initial spatial slice does not contain any black holes; rather, we start
with highly concentrated local distributions of scalar field energy, which, upon evolution, promptly
collapse to black holes that subsequently merge. To obtain initial conditions that mimic black
holes moving towards each other with a given initial velocity, we use Lorentz-boosted scalar field
profiles, as described in Section 4.2.1 below (however, for the sample collision presented here we
use time-symmetric initial data). The reason we construct initial conditions for mergers via scalar
field collapse, is simply that to do otherwise would require modification of the constraint solver at
the initial time (namely, specifying an initial excised region with appropriate boundary conditions).
The relatively minor drawback to this approach (if our goal is to study vacuum collisions) is that
some spurious scalar field energy will permeate the spacetime after black hole formation; however,

IThe two most important parameters affecting the run-time with excision are having adequate resolution about
the surface of excision, and placing the outer boundaries far enough away (if they are too close, 9 tends to drift
towards values < 1 near the Zmax,Zmin boundaries, eventually causing a crash). The boundary conditions on the
excision surface, as well as the smoothing operators used there, can also affect the run-time.

CHAPTER 4. BLACK HOLE EXCISION 103

Figure 4.1: Evolution of ® during prolate scalar field collapse. Shown in the figure is r®, where
r = 4/p? + 22, for several times early on during the evolution of the 257x513, pmax =
40 case. The height of the surface plot represents the magnitude of the function,
and the gridlines are drawn for reference only, and do not reflect the actual mesh
structure.

CHAPTER 4. BLACK HOLE EXCISION 104

R

ISy Yy

s
I
SeSSeSeNSL,

Y
HRR
R
T
R

I

Figure 4.2: The same information is shown here as in Figure 4.1, except we have truncated the
grid outside of the coordinate range p = 0,..,5 and z = —5..5, to better show the
excised region. Here, the mesh lines do correspond to the actual grid lines. ® in the
excised region is set to zero.

CHAPTER 4. BLACK HOLE EXCISION 105

S —~ NN W+~ O

|
o)

Figure 4.3: The shapes of the apparent horizon, from the same simulation and at the same times
as the plots in Figures 4.2 and 4.1.

pmaX:4O pmaXZBO
9 7\ T T ‘ 1T 17T T 177 ‘ T 17 ‘ T 7T \7 9 7\ T 7T 1T 1T 1T 1T ‘ 1T 1T ‘ T T \7
: ---h] u h]
8= —-hz 8 The -
2 e \] 2 E o~]
s ' F VN LN 3 = b T
6 - T 6 - NN
5 :\ [‘ L1 ‘ L ‘ L ‘ L1 \: 5 :\ L1 | ‘ L ‘ L ‘ L ‘ [\:
0 100 200 300 400 500 0 100 200 300 400 500
t t

Figure 4.4: The ADM mass (2.67) as a function of time, from the prolate scalar field collapse
simulations.

CHAPTER 4. BLACK HOLE EXCISION 106

pmaX:4O pmaXZBO
65 7\ T T 1T 17T T 177 ‘ T 17 ‘ T 7T \7 65 7\ T 7T 1T 1T 1T 1T ‘ 1T 1T ‘ T T \7
g I ——-h = 6 ——-h =
g ! h/2 1 h/2]
zg 55 ; ‘\\ —h/4 *: 25 5.5 :* _‘ *:
5 = 51 -
45 :\ L1 ‘ || ‘ | | ‘ [| ‘ [3 45 :\ L1 ‘ || ‘ || ‘ || ‘ Ll .
0 100 200 300 400 500 0 100 200 300 400 500
t t

Figure 4.5: The area mass estimate (4.1) as a function of time, from for the prolate scalar field
collapse simulations. The area mass can only be calculated if an apparent horizon is
found; at early times there is no apparent horizon, and we fail to find an apparent
horizon at late times in the lowest resolution simulation.

pmaX:4O pmaXZBO

2 7! T T ‘ T 1T ‘ T T ‘ T T T T T1] 2 7! T T ‘ T T T T ‘ T T ‘ T 17T
.. h 7 C]
2 150 _n/2 4 g 15F N s
W o N S =Y e h/2 A
Q 1 j ,,I} ST i E\Q] j P v 7 —]
o e) . a]
M 0.5 kL 4 = o5 [3
o . W -]
O { L1 ‘ I ‘ I | ‘ L1 ‘ [O 7; L1 ‘ I ‘ I ‘ I ‘ L1

0 100 200 300 400 500 0 100 200 300 400 500

t t

Figure 4.6: E(K ,”)—the £ norm of the residual of the evolution equation for K, (2.66)—from
the prolate scalar field collapse simulations. The time when excision begins is denoted
by the vertical dashed line for the h/4 and h/2 runs in the pmax = 40 and pmax = 80
cases respectively (the corresponding times for the other resolution runs are very
similar, and so are not shown to avoid clutter in the figure).

CHAPTER 4. BLACK HOLE EXCISION

107

8 L L L s B e B
L N . _
L , . _
6 C ! \\I\I‘\ | \,I\'\ ha]
“ Ny vy (IR

L / Moo 2
r /*‘/ \V\\ PN

> ~ry
= I <
c 4L, g =
[/ —
7‘\-/ —
S 7
0 Covo v b v b0

0 100 200 300 400

t

500

Figure 4.7: The convergence factor Q4 (1.55) for ¢, from the pmax = 40 simulations.

E(K#)x103

@]

1 1
2000 4000

1
6000 0

1
20

1
00

1 1 1
4000 6000

Figure 4.8: These plots demonstrates the “long term” stability of our excision scheme. The figure
on the left shows the ADM mass, while the figure on the right shows the error norm
E(K o), for the 129x257, pmax = 80 case. The code will not run forever with excision,
however, with a judicious choice of excision parameters, sufficient resolution, and the
outer boundaries far enough away, we should be able to evolve for a sufficient length
of time to study most axisymmetric phenomena.

CHAPTER 4. BLACK HOLE EXCISION 108

by using compact initial distributions of energy, most of the scalar field will fall into the black
holes, and the remnant field will have little gravitational influence on the evolution.

One of the potentially useful results from our study of black hole collisions is the use of boundary
conditions on the excision surface to manipulate the spacetime slices, and hence achieve desired
coordinate velocities of the holes during evolution. This is useful for several reasons, perhaps the
most significant being that by forcing the holes to move towards each other rapidly in coordinate
space, the shape of the encompassing apparent horizon (and hence excision surface) when the holes
do merge turns out to be less distorted than otherwise, improving the stability of the code and
reducing the resolution required to resolve the merged black hole. As will be discussed in more
detail in Section 4.2.2 below, we control the motion of a black hole by displacing 8% on the excision
surface by some amount. The particular form that 87 takes there is not important, and therefore
we believe that we will still be able to control black hole motion in our coordinate system once we
restrict the class of boundary conditions to obtain consistent evolution.

4.2.1 Boosted Scalar Field Initial Conditions

To obtain initial conditions for a black hole collision from scalar field collapse that mimic black
holes moving along the z-axis with given velocities, we specify the initial scalar field profile to be
that of a Lorentz boosted, flat space evolution. A Lorentz transformation along the z-axis takes
the form

z =9[z" — o]
t =t —v2], (4.2)

where v = 1/v/1 — 02, (p',2',t') are the coordinates relative to the “rest-frame” of the initial pulse
(i-e., the frame where the center of mass of the pulse is stationary), (p, z,t) are the coordinates of
the simulation, and v is the velocity of the boost. Therefore, we specify ®(p', z',t' = 0) via (2.52),
and I (p', 2',t' = 0) as described in Section 2.2.3 to obtained ingoing, out-going or time-symmetric
initial conditions from the perspective of (p’, z’,'). Then, we evolve the scalar field on a Minkowski
background, as far forwards and backwards in time ¢’ as necessary to use (4.2) to obtain the desired
initial conditions for ®(p, z,t = 0) and Ils(p, z,t = 0) on the entire (p, z) computational grid. This
procedure is repeated separately, with different values of v, for each of the two pulses that will
collapse to form the two black holes in the full evolution. We then translate each of the resultant
profiles by a given distance along the z-axis, to achieve a desired initial separation of the pulses,
before adding them to give the final ¢ = 0 shapes for ® and IIg.

We use a flat-space evolution in the above described procedure for two reasons. First, we would
not be able to apply the transformation (4.2) to a solution obtained with our code in the general
relativistic case, for (4.2) will not give initial conditions consistent with our coordinate and slicing
conditions. Second, we would not be able to add boosted solutions of the full evolution of single
pulses, as GR is not a linear theory (though, we could add the resultant scalar field solutions, and
use those as initial conditions, as is done with the flat-space generated data). Regardless, at this
stage in the development of the excision code we are not too concerned about the precise form of
the initial data, as long as there is some linear momentum (if desired) in each pulse, relative to a
distant observer.

4.2.2 Excision Boundary Conditions

The idea behind applying appropriate excision boundary conditions to 4%, to modify the coordinate
velocity of a given black hole, is rather simple, and is illustrated in Figure 4.9 below. In the figure,
we show schematically what the axis of a maximal slice of a single, spherically symmetric, origin
centered black hole spacetime might look like. For recall from the discussion in Section 1.5.2, that
the singularity avoidance property of maximal slicing manifests as a “freezing” of the slice as the

CHAPTER 4. BLACK HOLE EXCISION 109

singularity is approach, i.e. @ — 0 there, hence the evolution of the spacetime slice slows down (as
measured by t) in the vicinity of the hole. Consequently, the hypersurface normal vector n® on the
excision surface will point towards the black hole.

If the black hole were to remain at the same coordinate location during evolution, 8% would
need to be an odd function in z, approaching some positive number on the “upper” (towards zmax)
side of the excision surface, and minus the same number on the lower side of the excision surface.
Then, to cause the black hole to move on the coordinate grid during evolution, we can simply
displace the profile of 8% by some constant amount along the excision boundary. As illustrated in
the figure, adding a positive number to 8% their will cause the black hole to move in the negative
z direction, and vice-versa.

During a merger simulation, we can therefore speed-up the merger in coordinate time by shifting
the profile of 8% about the upper excision surface by a positive number, and that of $* about the
lower surface by a negative number. We determine the amounts to shift each profile by, in a given
simulation, by trial-and-error. Note that we do not instantaneously modify 3% to the desired shape.
Instead, at the time of excision, we replace the profile along the excision boundary with a linear
function in z, that has the same values on the maximum and minimum 2z points of the boundary as
before excision. Then, we slowly displace this line with time until the desired shape is reached. As
the two excised regions get close to one another, the linear profiles on both boundaries are adjusted
so that 8% approaches a common value at the place where the boundaries will come into contact
(though often a single, encompassing apparent horizon is found before then, and the two excised
zones are replaced by a single one). An example of this is given in the following section (see Figure
4.14).

4.2.3 A Sample Merger

Here, we show several figures from a time-symmetric, head-on, equal mass black hole collision
simulation. At t=0, ® is initialized as the sum of two profiles of the form (2.52), with A = 0.45,
A =3, (po,20) = (0,£20) and e = 1; Il = @ = & = 0 then. The outer boundary is at
Pmax = Zmax = —Zmin = 80, and the size of the mesh is 257x513. We use frozen boundary conditions
for o and ? after excision, and the “shifted-8%” boundary conditions for 87, as described in the
previous section.

Figure 4.10 contains several snapshots of ¢ during the evolution (which was stopped at ¢ =~ 1200
to prevent the local hard-disk from filling—by then over 600MB of data had been saved per grid
function). Figure 4.11 contains plots of the ADM and area mass estimates. The area mass can only
be computed when an apparent horizon is found—at intermediate times we lose track of the AH
(due to poor resolution), so then we extrapolate the motion of each hole based on prior velocities.
Even after the merger, the AH-finder fails to find the AH on occasion, hence the “jittery” behavior
of the area mass function then. We suspect that the increased jaggedness of the ADM mass after
a merger is due, in part, to reflections of gravitational waves off the outer boundary.

Figure 4.12 shows E(K o) (2.66) for the merger simulation, plus, for comparison, the same func-
tion from a simulation started with identical initial data, though without excision (this simulation
crashed at around ¢ = 500). Ideally, we would like to run the same simulations with excision at
different resolutions, to be able to do convergence testing; however, we do not have the computer
resources to run at higher resolutions, and at lower resolutions the AH-finder has trouble finding
the apparent horizons.

Figure 4.13 shows the gravitational waves emitted during the merger, as measured by the
Newman-Penrose scalar ¥, (1.22) at different locations along the equatorial plane. The initial
burst has features that roughly agree with similar results obtained in other simulations (see for
instance [79]), in particular the amplitude of the pulse, and its wavelength, which is expected to
be on the order of 32M [42]; though, as can be seen from Figure 4.11, we have a tremendous
uncertainty in what to use for M, and our outer boundary is about 5-10 times closer than that
used in [79]. After the initial burst, our result is rather “noisy”. A significant part of this noise is

CHAPTER 4. BLACK HOLE EXCISION 110

a) z-component of the
shift vector required to
freeze the location of
the black hole within
the coordinate system

b) z-component of the
shift vector required to
move the black hole
in the positive z
direction

black
holeregion

Figure 4.9: A schematic representation of a maximal slicing of a black hole spacetime. In the
upper figure, we show the values that $7 would need to have, on either side of the
excised region, in order for the black hole to remain at a fixed coordinate location in
the grid as we evolve. Similarly, the lower figure shows the values that 8% would need
to have for the black hole to move to the right, within the coordinate system.

CHAPTER 4. BLACK HOLE EXCISION 111

due to reflections from the outer boundary (we can directly see the reflections by looking at the
evolution of ¥4 over the entire domain).

Finally, to demonstrate the effectiveness of the shifted-3% boundary conditions we used in this
simulation, in Figure 4.14 we show * along the axis for this case, and for comparison, 8% obtained
in a simulation with identical initial conditions, though using frozen-8* boundary conditions. In
Figure 4.15 we show the AH shapes at different times for these two simulations.

CHAPTER 4. BLACK HOLE EXCISION 112

Figure 4.10: 1 at several times during the merger simulation. Note that in the figure we have
restricted the domain to a [0,40,-40,40] region, to better show the excised region.
Also, the mesh lines are for visualization purposes only, and do not reflect the
underlying computational grid.

CHAPTER 4. BLACK HOLE EXCISION 113

24 1T \\7
-] 15 |- -
22 — i]
2L 108 N 1
= . {1 = r N]
20 [a 101 el i
]8 7\ [‘ L1 ‘ L ‘ L ‘ L ‘ [5 7\ [‘ L ‘ L ‘ L ‘ L ‘ [\7

0 200 400 600 800 1000 0 200 400 600 800 1000

t t

Figure 4.11: The figure to the left shows the ADM mass estimate (2.67) of the merger spacetime,
while the figure to the right shows the area mass estimate (4.1). We did not draw the
area mass estimate with a connected line, for at times we lose track of the apparent
horizon, due to poor resolution.

5 - .
4 =
o g
P E
2 kb =
] - =

1 = —

@ \‘\\\‘\\\‘\\\‘\\\‘\
200 400 600 800 1000

t

-)

Figure 4.12: E(K ,7)—the £ norm of the residual of the evolution equation for K ,* (2.66)—from
the black hole merger simulation (solid line). Without additional runs at different
resolutions, such a plot is not too meaningful; however, to offer some comparison, we
plot the same function, obtained from a simulation with the exact same initial data,
though without excision (dashed-line). This second simulation crashed at around
t = 500 (the multigrid solver failed, probably because gradients in) were becoming
too steep), hence the data ends there.

CHAPTER 4. BLACK HOLE EXCISION 114

:_ T T T I T T T T T T T T T T T T T T I_:
= (p.2)=(100) E
§: 1 1 1 I 1 1 1 :§
:_ T T T I T T T _:
g_ 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I_§
;_ T T T I T T T I T T T I T T T I T T T I T T I_;
9
< = 3
= 3 E
= 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I__
:_ T T T I T T T I T T T I T T T I T T T I T T I_:
z_ (P2~ (50.0) ,\/\/\MW
E_ 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I_E
:_ T T T I T T T I T T T I T T T I T T T I T T I_:
z_ (p’Z)=(60’0) WM
§_ 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 I_§
0.04 :_ T T T I T T T I T T T I T T T I T T T I T T I_:
0.02 £ (0.2)=(70,0) 3
0 :
-0.02 E
0'04 : 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 I_:
0 200 400 600 800 1000

Figure 4.13: The Newman-Penrose scalar ¥, (1.22) multiplied by r = 1/p? + 22, from the black
hole merger simulation, measured at several different locations along the equatorial
plane (z = 0). The initial burst of energy coming from the merger does approz-
imately have the expected wave-length and magnitude; however, it is difficult to
judge which of the features are “real”, and which come from outer-boundary re-
flections (the dominant contribution to the “noise”, we suspect), solution error, or
inconsistent boundary conditions.

CHAPTER 4. BLACK HOLE EXCISION 115

62

t=251.3 _
= I ==
_____ ~‘-—’] - —

—t
0.1 F t=300.0 =
C L T T - — 3
ob——— [= - =
-0.1F B =
E L L L | L L L | L L L | L L L 3
—40 -20 0 20 4

7

Figure 4.14: This sequence of images demonstrates the boundary conditions we place on %, to
force the black holes to move together relatively rapidly in coordinate space. The
solid curves show 7 along the axis, in the z range [—40,40], from the merger simula-
tion using the shifted-8* coordinate condition (see Section 4.2.2). For comparison,
the dashed curves show 8% from a simulation with identical initial data, though
using a boundary condition where the profile of 3% is frozen-in at the time of first
excision (just after ¢ = 24.4, shown in the upper-most plot). 5% is set to zero in the
excised region. For the shifted-3* condition, we slowly displace §7 until a specified
maximum displacement is reached, at t = 39.4. This causes the two holes to move
together more rapidly in coordinate space, until we obtain a merger (at ¢ = 300 in
the shifted-3% case). See Figure 4.15 for the observed AH shapes, from these two
simulations.

0

CHAPTER 4. BLACK HOLE EXCISION 116

Apparent Horizon Location

Figure 4.15:

- t=244 E
E_ 7 N\ N _E

- l l l I I \ l l I l l / I \ l l l .

E T T T I T T T I T T T I T T T e
- =394 E
3 % \ 3

' | | I/ | | | | | | | | | \ | | .

E T T T I T T T I T T T I T T T B
= t=101.3 3
:_ 7 - N s . N _:
] m —t m e
- t=150.0 E

E i VAT — e Vit "
E t=187.9 E
SN — A { - F———
E t=200.4 E

g | | | | /T B \l | | | 1/ ~ T\ | | | | E

F T T T I T T T I T T T I T T T B
10 F t=298.9 E
5F 3
E 1 1 1 I 1 1 I 1 1 I 1 1 1]
-40 -20 0 20 4

Apparent horizon shapes from the two simulations discussed in the caption of Fig-
ure 4.14. The AHs drawn with a solid curve correspond to the simulation with the
shifted-5* boundary conditions, while those drawn with the dashed curves corre-
spond to the frozen-8* boundary conditions. In the shifted-4* simulation, we lose
track of the AH at ¢ = 187.9, before finding it again at ¢ = 298.9; while in the other
simulation we lose track of the AH shortly after ¢ = 200.

0

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 117

CHAPTER 5
CONCLUSIONS AND FUTURE WORK

The principal new results presented in thesis stem from a numerical study of gravitational collapse
of axisymmetric distributions of scalar field energy. We find that critical behavior at the threshold
of black hole formation is still evident in axisymmetry. However, in the presence of certain asymme-
tries, we find some evidence that the nature of the critical solution may differs from the spherically
symmetric one in the following manner. Near threshold, the scalar field initially approaches a so-
lution that approximates the discretely self-similar, spherically symmetric solution. At later times
during the evolution, small asymmetries in the initial data eventually grow to the point where the
self-similar region bifurcates into two new, locally self-similar solutions, separated by some distance
along the axis of symmetry. If this is an instability of the spherical critical solution, then we hy-
pothesize that the bifurcation process would repeat indefinitely, as one continues to tune to the
threshold of black hole formation. However, we have not been able to rule out the possibility that
the bifurcation is due to a focusing effect: as the initial, prolate distribution collapses to the origin,
asymmetries cause the scalar field energy to focus to two distinct centers (in principle, one could
construct initial data where there are an arbitrary number of these foci, though we have not yet
studied such cases). Additional work will be needed to confirm these speculations. In particular,
we will need to tune closer to criticality than what we have done so far. This may require that we
parallelize the code, to have access to more memory and shorter run times; or perhaps we could
construct a family of initial data that demonstrates bifurcation behavior without forcing excessively
elongated grids in the z direction, which would speed up the run time considerably.

Adaptive Mesh Refinement was essential to study critical behavior, and as mentioned in Chapter
4, AMR will be necessary to explore black hole collisions, and the interactions of black holes with
matter and gravitational waves. To this end, we need to incorporate black hole excision into the
AMR-based code. As shown in Chapter 4, our experiments with excision in the unigrid code were
reasonably successful, although more work needs to be done vis-a-vis inner boundary conditions
that are fully consistent with all of Einstein’s field equations.

Finally, we mention some of the additional directions in which we want to extend the code in
the near future. We need to improve the robustness of the multigrid solver to the point where it is
feasible to simulate critical collapse of gravitational waves. As mentioned in Section 2.3.8, we may
be able to cure the instability problems by judicious manipulation of the source functions within
the differential operators. However, it may be that a new system of variables will be needed—early
experiments performed by Hirschmann with alternative variables have given encouraging results
[115]. We would also like to incorporate additional matter fields, including fluids, electromagnetism,
and the complex scalar field discussed in Section 2.1.2, in particular to be able to include the effects
of angular momentum in our studies. This will require that we implement the full 2+1+1 formalism
in the code.

BIBLIOGRAPHY 118

BIBLIOGRAPHY

[1] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge, Cam-
bridge University Press 1973

[2] J. Kormendy and K. Gebhardt, Supermassive Black Holes in Nuclei of Galazies , astro-
ph/0105230

[3] D. Arnett Supernova and Nucleosynthesis, Princeton NJ, Princeton University Press 1996

[4] M.W. Choptuik, “Universality And Scaling in Gravitational Collapse Of a Massless Scalar
Field”, Phys. Rev. Lett. 70, 9 (1993)

[5] A. Abramovici et al., “LIGO: The Laser Interferometer Gravitational Wave Observatory”,
Science 256, 325 (1992)

[6] C. Bradaschia et al., “First Results on the Electronic Cooling of the Pisa Seismic Noise Super-
attenuator For Gravitational Wave Detection”, Phys. Lett. A137, 329 (1989)

[7] K. Danzmann and the GEO Team, Lecture Notes in Physics 410, 184 (1992)

[8] K. Tsubomo, M.K. Fujimoto and K. Kuroda, in Proceedings of the TAMA International Work-
shop on Gravitational Wave Detection, Tokio, Universal Academic Press (1996)

[9] see http://www.gravity.pd.uwa.edu.au/AIGO/AIGO.html

[10] R.S. Hamade and J.M. Stewart, “The Spherically Symmetric Collapse of a Massless Scalar
Field”, Class. Quant. Grav. 13, 497 (1996)

[11] R.S. Hamade, J.H. Horne and J.M. Stewart, “Continuous Self-Similarity and S-Duality”, Class.
Quant. Grav. 13, 2241 (1996)

[12] B. Briigmann, “Adaptive Mesh and Geodesically Sliced Schwarzschild Spacetime in 3+1 Di-
mensions”, Phys. Rev. D 54, 7361 (1996)

[13] M.W. Choptuik, T. Chmaj and P. Bizon, “Critical Behaviour in Gravitational Collapse of a
Yang-Mills Field”, Phys. Rev. Lett 77, 424 (1996)

[14] S.L. Liebling and M.W. Choptuik “Black Hole Criticality in the Brans-Dicke Model”, Phys.
Rev. Lett 77, 1424 (1996)

[15] M.W. Choptuik, E.-W. Hirschmann and S.L. Liebling, “Instability of an ‘Approximate Black
Hole’ ”, Phys. Rev. D 55, 6014 (1997)

[16] P. Papadopoulos, E. Seidel and L. Wild, “Adaptive Computation of Gravitational Waves from
Black Hole Interactions”, Phys. Rev. D 58, 084002 (1998)

[17] P. Diener, N. Jansen, A. Khokhlov and I. Novikov, “Adaptive Mesh Refinement Approach to
Construction of Initial Data for Black Hole Collisions”, Class. Quant. Grav. 17, 435 (2000)

[18] K.C.B. New, D. Choi, J.M. Centrella, P. MacNeice, M.F. Huq and K. Olson, “Three-
dimensional Adaptive Evolution of Gravitational Waves in Numerical Relativity”, Phys. Rev.
D62, 084039 (2000)

BIBLIOGRAPHY 119

[19] S. Hern, “Numerical Relativity and Inhomogeneous Cosmologies”, PhD dissertation, Cam-
bridge (1999), gr-qc/0004036

[20] S.L. Liebling, “The Singularity Threshold of the Nonlinear Sigma Model Using 3D Adaptive
Mesh Refinement”, gr-qc/0202093

[21] K.Maeda, M.Sasaki, T.Nakamura and S.Miyama, “A New Formalism of the Einstein Equations
for Relativistic Rotating Systems”, Prog. Theor. Phys. 63, 719 (1980)

[22] R. Arnowitt, S. Deser and C.W. Misner, in Gravitation: An Introduction to Current Research,
ed. L. Witten, New York, Wiley (1962)

[23] R. Geroch, “A Method for Generating Solutions of Einstein’s Equations”, Jour. Math. Phys.
Vol. 12, No. 6, 918 (1971)

[24] P.C. Argyres, in Contributions from the G1 Working Group at the APS Summer Study on
Particle and Nuclear Astrophysics and Cosmology in the Next Millennium, Snowmass, Colorado,
June 29 - July 14 (1994), astro-ph/9412046

[25] T. Koike, T. Hara, and S. Adachi, “Critical Behavior in Gravitational Collapse of Radiation
Fluid: A Renormalization Group (Linear Perturbation) Analysis”, Phys. Rev. Lett. 74, 5170
(1995)

[26] C. Gundlach, “Understanding Critical Collapse of a Scalar Field”, Phys.Rev. D55, 695 (1997)

[27] J. M. Martin-Garcia and C. Gundlach, “All Nonspherical Perturbations of the Choptuik Space-
Time Decay”, Phys.Rev. D59, 064031 (1999)

[28] The notion of black hole excision was first expounded by Unruh (1984)—see J. Thornburg,
“Coordinates and boundary conditions for the general relativistic initial data problem”, Class.
Quantum Grav. 4, 1119 (1987)

[29] R.M. Wald, General Relativity, Chicago IL, University of Chicago Press 1984

[30] B.K. Berger, “Numerical Approaches to Spacetime Singularities”, Living Rev. Rel. 2002-1,
gr-qc/0201056

[31] V.A. Belinskii, J.M. Khalatnikov and E.M. Lifshitz, “Oscillatory Approach to a Singular Point
in the Relativistic Cosmology”, Advan. in Phys. 19, 525 (1970)

[32] R. Penrose, “Gravitational Collapse: The Role of General Relativity”, Revistas del Nuovo
Cimento 1 252 (1969)

[33] R.M. Wald, Gravitational Collapse and Cosmic Censorship, to appear in “The Black Hole
Trail”, ed. by B. Iyer., gr-qc/9710068

[34] T. Harada, H. Iguchi and K. Nakao, “Physical Processes in Naked Singularity Formation”,
Prog. Theor. Phys. 107 449 (2002)

[35] C. Gundlach, “Critical phenomena in gravitational collapse”, Living Rev.Rel. 2 1999-4, gr-
qc/0001046

[36] A. Wang, “Critical Phenomena in Gravitational Collapse: The Studies So Far”, Braz.J.Phys.
31, 188 (2001)

[37] S. Hod and T. Piran, “Fine Structure of Choptuik’s Mass Scaling Relation”, Phys. Rev. D
55, 440 (1997)

BIBLIOGRAPHY 120

[38] R.A. Hulse and J.H. Taylor “Discovery of a Pulsar in a Binary System”, Astrophys. J. 195,
L51 (1975)

[39] E. Newman and R. Penrose, “An Approach to Gravitational Radiation by a Method of Spin
Coefficients”, J. Math. Phys 3, 566 (1962); erratum 4, 998

[40] R. Penrose Proc. Roy. Soc. Lond. “Zero Rest-Mass Fields Including Gravitational—
Asymptotic Behavior”, A284, 159 (1965)

[41] S.A. Teukolsky, “Perturbations of a Rotating Black Hole. 1. Fundamental Equations for Grav-
itational Electromagnetic, and Neutrino Field Perturbations”, Astrophys. J. 185, 635 (1973)

[42] L. Smarr, in Sources of Gravitational Radiation, ed. L. Smarr, Seattle, Cambridge University
Press (1978)

[43] C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation, New York, W.H. Freeman and
Company (1973)

[44] J.W. York, Jr., in Sources of Gravitational Radiation, ed. L. Smarr, Seattle, Cambridge Uni-
versity Press (1979)

[45] L. Smarr and J.W. York, Jr., “Kinematical Conditions in the Construction of Spacetime”,
Phys. Rev. D17, 2529 (1978)

[46] P.R. Brady, J.D.E. Creighton and K.S. Thorne, “Computing the Merger of Black-Hole Bina-
ries: the IBBH Problem”, Phys. Rev. D58, 061501 (1988)

[47] M. Shibata, “Fully General Relativistic Simulation of Merging Binary Clusters — Spatial Gauge
Condition =7, Prog. Theor. Phys. 101, 1199 (1999)

[48] L. Lehner, “Numerical Relativity: A Review”, Class. Quant. Grav. 18, R25 (2001)

[49] C. Bona and J. Masso, “Harmonic Synchronizations of Space-Time”, Phys.Rev. D38, 2419
(1988)

[50] M. Alcubierre, “The Appearance of Coordinate Shocks in Hyperbolic Formalisms of General
Relativity”, Phys.Rev. D55, 5981 (1997)

[61] D. Garfinkle, “Harmonic Coordinate Method for Simulating Generic Singularities”, Phys.Rev.
D65, 044029 (2002)

[52] A.M. Abrahams and C.R. Evans, “Gauge Invariant Treatment of Gravitational Radiation Near
the Source: Analysis and Numerical Simulations”, Phys. Rev. D42, 2585 (1990).

[53] E. Seidel and W. Suen, “Towards a singularity-proof scheme in numerical relativity”, Phys.
Rev. Lett. 69,1845 (1992)

[54] P. Anninos, J. Massé, E. Seidel, W. Suen and J. Towns, “Three-dimensional Numerical Rela-
tivity: The Evolution of Black Holes”, Phys. Rev. D52, 2059 (1995)

[55] R.L. Marsa and M.W. Choptuik, “Black Hole-Scalar Field Interactions in Spherical Symme-
try”, Phys. Rev. D54 4929 (1996)

[56] R. Gémez, “Stable Characteristic Evolution of Generic Three-Dimensional Single-Black-Hole
Spacetimes”, Phys. Rev. Lett. 80, 3915 (1998).

[57] G.B. Cook et al, “Boosted Three-Dimensional Black-Hole Evolutions with Singularity Exci-
sion”, Phys. Rev. Lett. 80, 2512 (1998).

BIBLIOGRAPHY 121

[58] M.W. Choptuik, E.W. Hirschmann and R.L. Marsa, “New Critical Behavior in Einstein-Yang-
Mills Collapse”, Phys. Rev. D60 124011 (1999)

[59] S. Brandt et al, “Grazing Collisions of Black Holes via the Excision of Singularities”, Phys.
Rev. Lett. 85, 5496 (2000).

[60] F. Pretorius and M.W. Choptuik, “Gravitational collapse in 2+1 dimensional AdS spacetime”,
Phys. Rev. D62, 124012 (2000)

[61] M. Alcubierre and B. Brugmann, “Simple Excision of a Black Hole in 3+1 Numerical Relativ-
ity”, Phys. Rev. D63, 104006 (2001)

[62] M. Alcubierre, B. Brugmann, D. Pollney, E. Seidel and R. Takahashi “Black Hole Excision for
Dynamic Black Holes”, Phys. Rev. D64, 061501 (2001).

[63] R.M. Wald and V. Iyer, “Trapped Surfaces in the Schwarzschild Geometry and Cosmic Cen-
sorship”, Phys. Rev. D44, R3719 (1991).

[64] M.A. Pelath, K.P. Tod and R.M. Wald., “Trapped Surfaces in Prolate Collapse in the Gibbons-
Penrose Construction”, Class. Quant. Grav. 15, 3917 (1998)

[65] J. Thornburg, “Finding Apparent Horizons in Numerical Relativity”, Phys. Rev. D54, 4899
(1996)

[66] M. Alcubierre, S. Brandt, B. Brugmann, C. Gundlach, J. Masso, E. Seidel and P. Walker,
“Test Beds and Applications for Apparent Horizon Finders in Numerical Relativity”, Class.
Quant. Grav. 17 2159 (2000)

[67] T. Nakamura, K. Oohara and Y. Kojima, “General Relativistic Collapse of Axially Symmetric
Stars”, Prog. Theor. Phys. Suppl. 90, 13 (1987)

[68] L.F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical
Problems involving Differential Equations, with an Application to the Stresses in a Masonry
Dam.”, Phil. Trans. Roy. Soc. 210, 307 (1910)

[69] B. Gustafsson, H. Kreiss and J. Oliger, Time Dependent Problems and Difference Methods,
New York, John-Wiley & Sons, Inc. 1995

[70] H. Kreiss and J. Oliger, “Methods for the Approximate Solution of Time Dependent Prob-
lems”, Global Atmospheric Research Programme, Publications Series No. 10. (1973)

[71] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes in Fortran
77: The Art of Scientific Computing, Cambridge, Cambridge University Press 1997

[72] M.J. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations”, J. Comp. Phys. 53, 484 (1984)

[73] M.J. Berger and I.Rigoutsos, “An Algorithm for Point Clustering and Grid Generation”, IEEE
Trans. Vol. 21 No. 5 (1991)

[74] U. Trottenberg, C. Qosterlee and A. Schuller, Multigrid, London, Academic Press 2001

[75] A. Brandt, “Multi-level Adaptive Solutions to Boundary-value Problems”, Math. Comput. 31,
330 (1977)

[76] J. Thornburg, “A Multiple-Grid-Patch Evolution Scheme for 3-D Black Hole Excision”, to
appear in Proceedings of the 9th Marcel Grossman Meeting, qr-qc/0012012

BIBLIOGRAPHY 122

[77] L. Smarr, “The Structure of General Relativity with a Numerical Illustration: The Collision
of Two Black Holes”, Univ. of Texzas at Austin Ph.D. Thesis (1975)

[78] K.R. Eppley, Princeton Ph.D. Thesis (1977)

[79] P. Anninos, D. Hobill, E. Seidel, L. Smarr and W. Suen, “Collision of Two Black Holes”, Phys.
Rev. Lett. 71, 2851 (1993)

[80] J. Baker, A. Abrahams, P. Anninos, S. Brandt, R. Price, J. Pullin and E. Seidel, “The Collision
of Boosted Black Holes”, Phys.Rev. D55, 829 (1997)

[81] P. Anninos and S. Brandt, “Head-On Collision of Two Unequal Mass Black Holes”, Phys. Reuv.
Lett. 81, 508 (1998)

[82] T. Nakamura, “General Relativistic Collapse of Axially Symmetric Stars Leading to the For-
mation of Black Holes”, Prog. Theor. Phys. 65, 1876 (1981)

[83] R.F. Stark and T. Piran, “Gravitational-Wave Emission from Rotating Gravitational Col-
lapse”, Phys. Rev. Lett. 55, 891 (1985),
erratum Phys. Rev. Lett. 56, 97 (1986).

[84] M. Alcubierre, S. Brandt, B. Brugmann, D. Holz, E. Seidel, R.Takahashi and J. Thornburg,
“Symmetry without Symmetry: Numerical Simulation of Axisymmetric Systems using Carte-
sian Grids”, Int. J. Mod. Phys. D10 273, (2001)

[85] M. Shibata, “Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity
— Criteria for Prompt Collapse to Black Holes”, Prog. Theor. Phys. 104 325 (2000)

[86] A.M. Abrahams, G.B. Cook, S.L. Shapiro and S.A. Teukolsky, “Solving Einstein’s Equations
for Rotating Spacetimes: Evolution of Relativistic Star Clusters”, Phys. Rev. D49, 5153 (1994)

[87] A.M. Abrahams, S.L. Shapiro and S.A. Teukolsky, “Disk Collapse in General Relativity”,
Phys. Rev. D 50, 7282 (1994)

[88] S.L. Shapiro and S.A. Teukolsky, “Formation of Naked Singularities: The Violation of Cosmic
Censorship”, Phys. Rev. Lett. 66, 994 (1991)

[89] S.L. Shapiro and S.A. Teukolsky, “Collisions of Relativistic Clusters and the Formation of
Black Holes”, Phys. Rev. D45, 2739 (1992)

[90] S. Brandt, J.A. Font, J.M. Ibanez, J. Masso and E. Seidel, “Numerical Evolution of Matter in
Dynamical Axisymmetric Black Hole Spacetimes”, Comput. Phys. Commun. 124 169 (2000)

[91] S. Brandt and E. Seidel, “The Evolution of Distorted Rotating Black Holes I: Methods and
Tests”, Phys. Rev. D52, 856 (1995)

[92] S. Brandt and E. Seidel, “The Evolution of Distorted Rotating Black Holes II: Dynamics and
Analysis”, Phys. Rev. D52, 870 (1995)

[93] S. Brandt and E. Seidel, “The Evolution of Distorted Rotating Black Holes III: Initial Data”,
Phys. Rev. D54, 1403 (1996)

[94] D. Garfinkle and G.C. Duncan, “Numerical Evolution of Brill Waves”, Phys.Rev. D63, 044011
(2001)

[95] A.M. Abrahams and C.R. Evans, “Trapping a Geon: Black Hole Formation by an Imploding
Gravitational Wave”, Phys. Rev. D46, R4117 (1992).

BIBLIOGRAPHY 123

[96] A.M. Abrahams and C.R. Evans, “Critical Behavior and Scaling in Vacuum Axisymmetric
Gravitational Collapse”, Phys. Rev. Lett. 70, 2980 (1993).

[97] J.M. Overduin and P.S. Wesson, “Kaluza-Klein Gravity”, Phys. Rept. 283, 303 (1997)
[98] D.J. Kaup, “Klein-Gordon Geon”, Phys. Rev. 172, 1331 (1968)

[99] R. Ruffini and S. Bonazzola, “Systems of Selfgravitating Particles in General Relativity and
the Concept of an Equation of State”, Phys. Rev. 187 1767 (1969)

[100] M.W. Choptuik, I. Olabarrieta, W.G. Unruh and J. Ventrella, in preparation

[101] J.M. Bardeen and T. Piran, “General Relativistic Axisymmetric Rotating Systems: Coordi-
nates and Equations”, Phys. Rep. 96 205 (1983)

[102] K.S. Thorne, in Magic Without Magic; John Archibald Wheeler, edited by J. Klauder, Frie-
man, San Francisco, 1972

[103] E. Seidel, “Black Hole Coalescence and Mergers: Review, Status, And "Where are we Head-
ing?’ ”, Prog. Theor. Phys. Suppl. 136, 87 (1999).

[104] B. Brugmann, “Numerical Relativity in (3+1)-Dimensions”, Annalen Phys. 9, 227 (2000).

[105] M. Alcubierre et al, “The 3D Grazing Collision of Two Black Holes”, Phys. Rev. Lett. 87,
271103 (2001)

[106] R.L. Marsa and M.W. Choptuik, “The RNPL User’s Guide”,
http://laplace.physics.ubc.ca/Members/marsa/rnpl/users_guide/users_guide.html (1995)

[107] L.R. Petzold and A.C. Hindmarch, “LSODA—Livermore Solver for Ordinary Differential
equations, Automatic method switching for stiff and nonstiff problems”, Lawrence Livermore
National Laboratory (1987)

[108] M.W. Choptuik, Private Communication.
[109] D. Choi, Private Communication.
]

[110] W. Hackbusch, Theory and Numerical Treatment of Elliptic Differential Equations, Springer,
New York, 1992

[111] R. D’Inverno, Introducing Einstein’s Relativity, New York, Oxford University Press 1996

[112] D. Garfinkle and G.C. Duncan, “Scaling of Curvature in Sub-critical Gravitational Collapse”,
Phys.Rev. D58, 064024 (1998)

[113] T.C. Zhao and M. Overmars, Forms Library: A Graphical User Interface Toolkit for X 1998

[114] J. Neider, T. Davis and M. Woo, The Official Guide to Learning OpenGL, Release 1 Addison-
Wesley, 1994

[115] E. Hirschmann, Private Communication.

APPENDIX A. EQUATIONS AND FINITE DIFFERENCE OPERATORS 124

APPENDIX A

EQUATIONS AND FINITE DIFFERENCE OP-
ERATORS

In this Appendix, we list the equations that we have obtained by applying the 2+ 1+ 1 decomposi-
tion, described in Section 2.1, in our chosen coordinate system (Section 2.2.1), with a real, massless
scalar field (Section 2.1.1). We also list the set of finite difference operators that we have used to
convert the continuum equations to finite difference form.

A.1 Analytic Equations
Summarizing Section 2.2.1, the four-metric is
ds® = (=a® +¢* [(8°)* + (67)?]) dt* + 2¢* (Bdp + B7dz) dt
+¢* (dp® + d2” + p*e’*7dg?) (A1)

The conjugate variable to the scalar field ® is Ilg (2.38), and the conjugate to & is (2.35). All
of these variables are functions of p,z and t.
The maximal slicing condition results in the following elliptic equation for a:

2(pay) o+ oy (2% + (p5)7p> +a, (2% + (pa),z)

4
—— (B =B)+ (B .+ B)] — Z’f—a [2apQ + B° , — ,BZ,Z]2 —16mall =0 (A.2)

The Hamiltonian constraint is

glee | g¥zz | 16228 + 8(pa) L 8(po).. %

¥ ¥ ¥ 7
b = B 4 (B4 522 + 2 g 2, - 7]
202 i # i 2 602 P 0 v
= —167 (I} + @, +8.%) =6 (p* (7)) |,
3P0
2 2
-2((02),,) —2(p9).. -2 ((09)..) (A.3)
The p and z momentum constraints are
2 1 z z _ 2
gﬂp,pp + /Bp,zz + gﬁz,zp + 32W%H¢,p - ((% - 6%) - (pa),z) (/8 P + ﬂp,z)
2 8 - 2 _ _ _
-2 (% _ 6%) 87— 5] — Saft - 222 [69% +Q,+30 (po)’p] —0, (A4)

APPENDIX A. EQUATIONS AND FINITE DIFFERENCE OPERATORS 125

and

1
_ﬂp,zp +

20 (pw6
3

), + 25 (%)] 8+ 5,)

s -5 (2 -6)| - o) - 22 (0022 40,)

+32n%n¢,z —2a(5.,,)p*Q =0 (A.5)

The definition of 2 (2.35) gives an evolution equation for & (where the over-dot *~ denotes a time
derivative):
8P

G =20 (p5) o + °0,. —aQ — [—] (A.6)
; ol

4
Bz,pp + gﬂz,zz -

The evolution equation for Q is

. _ _ 1 9 9 1 (a,
Q=28 (p0) o + 870z = 52 (807 = 872°) + (7)4)

a (¢2),p) _2_a(w,p2 _)(g w_p)
+¢6(s), Tan Py T Ty

a | f(a. 29, =2 a 2
— i [a,z (7 +)) +p0 . +a,zz] +647T@p(@’p2) (A7)

Using ®) K = 0, we obtain an evolution equation for ¢, which can be used instead of the Hamiltonian
constraint (A.3) to solve for 1:

V=16 +9,0° + % (2B°, + B2 + pafd) . (A.8)

The definition of Il and the wave equation for & give

(0]

b= pre, +5°®. + P2

IIs, (A.9)

and
) 1 _
e = BTl , + B1ls . + §H<1> (apQt + 287 + B2)

+% [2 (pat®®,) L, + (a¢2q>z),z] + % [(p&)’p @, + (p7) , <I>z] (A.10)

APPENDIX A. EQUATIONS AND FINITE DIFFERENCE OPERATORS 126

The set of axis regularity conditions, applied at p = 0 are:

avp = ?

b = Y

z
5P

0
0
0
B =0
& = 0,
0

0

0

)

?

Q =
(P —

woo=

?

My, = O. (A.11)

The outer boundary conditions we use, applied at p = pmaz, 2 = Zmaz a0d 2 = Zpmpin, are:
a=1, or a—1+po,+za, = 0,

=1, or p—1+pp,+zp. =

=0, or B*+pB,+2B, =

pr=0, or B°+pBl+2B =

TG4+ po,+ 26, +6 =

7

Qe +pQ,+20,+0 =

r®;+pP,+20,.+® =

o + plle,p + 2lle . + 1o = (A.12)

See Section 2.2.6 for a description of the excision boundary conditions.

A.2 Finite Difference Operators

In this section, we write out all of the difference operators we have used to convert the differential
equations in the previous section to finite difference equations. At all interior points of the mesh,
the centered forms of the derivate operators are used, and along boundaries (including the excision
boundary), backward and forward operators are used as appropriate. Kreiss-Oliger style dissipation
(see Section 1.5.4) is applied to evolution equations, at interior points at least two grid points
inward, in the direction of the stencil, from any boundary. For & and 2, we linearly interpolate in
p at location Ap (and optionally at 2Ap as well), using the values of these variables at p = 0 and
p =2Ap (or p = 3Ap). Below, we use the notation u; ; to label a point in the mesh corresponding
to coordinate location ((i — 1)Ap, (j — 1)Az + 2zmin) (except for the coordinate variable p, where

it is sufficient to use p;). For time derivatives, we use ui; to denote the retarded time level, and
ultt

77" the advanced time level. All of the finite-difference operators are 2"% order accurate.

APPENDIX A. EQUATIONS AND FINITE DIFFERENCE OPERATORS 127
Centered Difference Operators
u, - —u"“”é;;"’l”' (A.13)
u o Uit (A.14)
Uit1,j — 2Uq,5 + Ui—1,j
R ey (A.15)
Ui j+1 — 2u,~,j + Ui -1 A
zZZz - .].
u, - e (A.16)
Uit1,j = Yi=1,j
U, = (A.17)
"’ P12+1 — Py
Wit1,j + Ui,j Uij + Ui—1,5
N — A.18
Wke = SR p(pi+ 5ol 2hplp— ApfD) (4.18)
Uit1,j — Uq 5 Uj,j — Ui—1,5
u N — A.19
N 1) Py 75 R Vo P V) (419
uttl _gn
u, — —L " A7 o (A.20)
Forward-Difference Operators
vy o S - Sy (a2)
—Uj j42 + 4ui’j+1 — 3ui’j A
z .22
Ue 2Az ()
—Uit2,j + iy, — 3uij
— A2
o 4piAp (4.23)
—Uino i) 0ine + AUir i) 0ia1 — Sus 5 /0
(wfp), — —Vemilbaed ZZ;’J/ Pi1 — 3ii/pi (A.24)
(ui,j(12pi + 11Ap)/(6p3) — wiv1,i(5pi + 3Ap)/(p})
’U/’p/p) p - 2
’ (Ap)
L itz 8pi + 3A0)/(2p) — uits,i(3pi + Ap)/(3p7) (A.25)
(Ap)? '
Backward-Difference Operators
Ui—2,5 — 4ui_1,j =+ 3uz-,j
A2
uap 2Ap (6)
Ui j—2 — du; -1 + 3uy A
2
Yz 2Az (A-27)
Dissipation Operators
The following dissipation operator is applied, as discussed in Section 1.5.4, in the p direction:
€
—é (ui,g,j - 4u,~,1,j + Gu,’,j - 4ui+1,j + 'u,'+2,j) (A.ZS)

1

APPENDIX A. EQUATIONS AND FINITE DIFFERENCE OPERATORS 128

and in the z direction:

€
1—2 (Uij—2 — dugj—1 + 6uij — dui 1 + uijy2), (A.29)

where €4 ranges from 0 to 1.

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 129

APPENDIX B
DATA ANALYSIS AND VISUALIZATION

In this appendix, we describe aspects of a data analysis and visualization program, called the
Data-Vault (DV for short), that we have written to aid in the development of AMR based finite
difference codes. The original idea and design philosophy behind the DV is due to Choptuik; I
was responsible for some additional details in this first specification, and wrote the corresponding
programs.

The two principle goals of the DV are: 1) to serve as a central data repository, receiving and
collating information produced by programs running across a network (the core functionality of
the DV), and 2) to provide a graphic-user-interface (GUI) based front-end for a user to efficiently
visualize and manipulate the data in the repository.

From the outset, the design philosophy behind the DV was that the core functionality should
be implemented as some realization of a wvirtual machine. In other words, we think of the core
functions of the DV as a CPU (central-processing-unit), that has internal registers, an instruction
set, and the ability to execute user programs (an example of which would be the GUI front-end).
There are several advantages to designing the program in this fashion. First of all, we cannot,
and should not, try to foresee all of the data analysis functions that will be required to interpret
results from finite-difference based numerical codes. Instead, we want to try to identify the basic
building-blocks of these data analysis functions, and then provide a programmable environment
so that the user can, with relative ease, build the necessary analysis tools. A virtual machine
is a natural concept to achieve this environment. Second, we know that we will not be able to
exactly identify what all the needed building-blocks are, until the applications exist that produce
the data. For example, the current virtual machine specification, described in Section B.1 below,
was driven by the needs of our 2D AMR code, and it may not be entirely sufficient for codes using
non-uniform grids, staggered meshes, vector fields, etc. Therefore, we expect that the DV will
change as our needs expand, and it is important to have a design philosophy that is flexible enough
to accommodate changes in a manner that will not degrade the performance of the software. One
way to achieve this is to define the DV as an implementation of the virtual machine, and hence
fundamental modifications to the program should be made starting from the level of the virtual
machine specification.

In the remainder of this appendix, we describe the virtual machine specification of the DV, and
give some details of the current implementation and GUI visualization front-end.

B.1 The Data-Vault Virtual Machine Specification

We present the DV virtual machine specification in three parts—the definition of a register (Section
B.1.1), the basic instruction set (Section B.1.2), and the program execution environment (Section
B.1.3).

B.1.1 Register Structure

A register contains the fundamental unit of data produced by our AMR-based finite difference codes,
namely a grid function. A grid function is the discretized representation of a continuum function,
in both space and time. This leads to the following basic definition of a register, summarized in
Figure B.1 below: a register is a linked list of time structures, a time structure is a linked list
of level structures, and a level structure is a linked list of single grid structures. In other words,

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 130

| Name | Description
name a unique character string labelling the register
next pointer to the next register within the global list of registers
prev pointer to the previous register within the global list of registers
ts pointer to the list of time structures within this register
coord _names[4] | optional strings for the names of the coordinates (time plus 3 spatial)
fuzzy[4] a real number per coordinate, defining a threshold for “fuzzy logic”
optional, user-definable attributes

Table B.1: DV register structure definition

| Name

Description

time | the coordinate time of all grids within this time structure
next | pointer to the next time structure within the list

prev | pointer to the previous time structure within the list
levels | pointer to the list of level structures at this time
optional, user-definable attributes

Table B.2: DV time structure definition

all grids linked to a register structure (via level and time links) belong to the same grid function;
all grids linked to a time structure (via level links) share the same coordinate time; and all grids
linked to the same level structure share the same spatial discretization scale. Notice then, that by
“fundamental unit of data”, we do not mean the smallest, indivisible object produced by the code
(which would be a single real number); rather, we want a register to represent a single variable of
our solution.

In addition to linked-list information, each data structure within a register has several named
attributes, describing the structure. The DV also provides a mechanism for user-defined attributes
to be added, modified and removed at any structure within a register. Tables B.1, B.2, B.3 and B.4
below describe all of the attributes currently defined for the register, time, level and grid structures
respectively.

An important aspect of a register, is that the sequence of levels, times and grids within a
given linked list is ordered and unigque. By unique, we mean the following: a register is built by
adding a set of grids, one by one, to the register (see the instruction add_grid_str in Section
B.1.2); the register structure obtained after all the grids have been added is required to be unique,
regardless of the sequence in which the individual grids were added. The uniqueness, and resultant
ordering of grids, is defined by the instruction gridemp(A,B) (see Section B.1.2), that determines
whether grid A is “less than”, “greater than” or “equal” to grid B. The particular criteria used by
gridecmp is up to the implementation, as is the course of action to be taken if two grids cannot be
differentiated (if they are “equal”).

B.1.2 Instruction Set

In this section we describe the “minimal” set of primitive instructions that should be provided by
any implementation of the DV. In practice, depending upon the implementation, a larger set of
instructions may be necessary. For example, as described in B.2, in the current version of DV, all of
the data structures are implemented as C structures, and we allow programs to directly access the
structure elements, bypassing the need to define instructions to read/write individual attributes of

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 131

Register Structure

L2

t2 L1 L2

Time Structures Level Structures Grid Structures

0

Figure B.1: A diagrammatic description of the Data-Vault register structure.

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 132

| Name | Description |

dx the mesh spacing defining this level

next | pointer to the next level structure within the list
prev | pointer to the previous level structure within the list
grids | pointer to the list of grid structures at this level
optional, user-definable attributes

Table B.3: DV level structure definition

| Name | Description
next pointer to the next grid structure within the list
prev pointer to the previous grid structure within the list
dim spatial dimension of the grid

shape[dim] | size of the grid

coord_type | a flag, indicating the grid type (uniform, curvilinear, etc.)
data pointer to the data array of the grid

coords pointer to the coordinate array(s) of the grid

optional, user-definable attributes

Table B.4: DV grid structure definition

a register! (one exception is the rename _reg instruction to rename a register).

add_grid_str

The add_grid_str(A,g) instruction adds a grid structure g to register A. If register A does not
yet exist, then add_grid_str will create it before adding the grid. The position within A where g
is inserted is governed by the operation of the instruction gridemp.

gridemp

The gridemp(gl,g2) instruction compares grid gl to g2, and indicates (by whatever mechanism
the implementation provides) whether g1 > ¢2, g1 < g2 or g1 = g2. See Section B.2 for the
particular sequence of comparisons used in the current implementation.

delete_reg
delete_reg(A) removes register A from the DV.

delete_grids

delete_grids(A,gl1,g2,...) removes the set of grids gl,g2,... from register A. If all grids are
removed by this operation, then register A is deleted. In other words, empty registers are not
allowed.

rename._reg

rename reg(A,B) changes the name of register A to B, if B does not exist. This operation
must always be performed as an instruction, to enforce the required uniqueness of a register name

LOf course, this is somewhat dangerous in the sense that we cannot enforce the read-only property that many
attributes are implied to have.

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 133

(thus in the current implementation, users must refrain from simply altering the name field of the
register structure).

gclip

The instruction gl=gclip(g2,ibbox) returns in gl a clipped version of grid g2, as specified by
the index bounding box ibbox. See Section B.2.1 for a description of an index bounding box.

Sequential Iterator Functions

At this stage, the only defined mechanism by which a user can access individual data struc-
tures within a register is via sequential iteration, with limited back-tracking support, and op-
tional filtering of the data. In the future it may be useful to define a random access mechanism,
however we have not yet had the need for it. The set of sequential iterator instructions are:
init_s_iter,next_g,next_ts,next_l, save_s_iter and restore_s_iter. Each one of the next_... in-
structions, when invoked repetitively after initialization with init_s_iter, implements a depth-first
traversal of the register structure up to a given level. However, nothing prevents the user from
issuing an arbitrary sequence of different next_... instructions, resulting in a more complicated
traversal of the register structure. The following paragraphs describe each of these functions in
detail.

init_s_iter

The instruction g=init_s_iter(S,A,givec) initializes an iterator S for register A, with an optional
“generalized index vector” givec allowing the user to select a subset of grids within the register to
loop through. The first grid g in the register is returned. The generalized index vector contains
information selecting a set of times, levels, and/or some portion of the computational domain.
When a givec is specified, the iteration instructions next_... do not actually skip over or clip
grids; rather a flag within the iterator is set to one of GIV_ON (the current grid is included
within the selection specified by givec), GIV_OFF (the current grid is excluded), or GIV_CLIP
(the current grid is included, but must be clipped — see the gclip function above, and the iterator
supplies the relevant index bounding box for the clip function). The user can then skip/clip as
desired. It is up to the implementation how complicated a selection is allowed by givec—see
Section B.2.1 for that of the current version of the DV.

next_g

The instruction g=next_g(S) returns the next grid g, in sequence, within the register referenced
by the iterator S. The sequence of grids is as defined by the gridemp function, where grid g1 will
be returned in a set of next_g calls before g2 if g1 < g2. Equivalently, the register tree-structure
depicted in Figure B.1 is traversed in depth first order by next_g.

next_l

The instruction g=next_1(S) returns the first grid g at the next level within the register referenced
by the iterator S, in the sequence defined by the gridemp function. Equivalently, a sequence of
next_1 calls implements a depth first traversal of the tree-structure depicted in Figure B.1, up to
the depth of the level nodes.

next_ts

The instruction g=next_ts(S) returns the first grid g at the next time within the register refer-
enced by the iterator S, in the sequence defined by the gridemp function. Equivalently, a sequence

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 134

of next_ts calls implements a depth first traversal of the tree-structure depicted in Figure B.1, up
to the depth of the time nodes.

save_s_iter, restore_s_iter

The instruction save_s_iter(S) records (internally) the current position of the iterator S within
the corresponding register. The instruction g=restore_s_iter(S) resets the position of the iterator
S to that saved by the most recent save_s_iter instruction, and returns the corresponding grid—if
no prior save_s_iter had been issued, the iterator is reset to the initial state.

apply_unary_gf

The instruction A=apply_unary_gf(f, B,MASK,MASK _VAL,givec) applies a function f, that
operates on a single grid, sequentially to all grids in the source register B, and stores the result in
a new register A. The source register B can optionally be filtered with a generalized index vector
givec, and an optional mask register MASK with corresponding real number value MASK_VAL
can be specified. Registers B and M ASK are required to have identical structure. It is up to the
function f to interpret the mask; the DV merely synchronizes and optionally filters the source and
mask registers prior to the call to f. The intended purpose of the mask is to specify a non-trivial
region (i.e. more complicated that what can be specified via givec) within the register where the
given function is to be applied.

The function f is required not to alter the contents of any source or mask grids; the result of the
function must be returned via a new grid. This is to prevent the operation of f from causing the
structure of a register to be altered mid-stream during A=apply_unary_gf, which could happen
if f were allowed to alter a grid in a manner that changed its relative position within the register
(for instance in a coarsening operation). This also allows f to be completely ignorant of the register
structure (in other words f only needs to know what a grid is).

apply_binary_gf

The instruction A=apply_binary_gf(f,B,C,MASK,MASK _VAL,givec) operates identically
to apply_unary_gf described above, except here f is a binary grid function, accepting two (iden-
tical) grids as input, and returning a single grid as output.

B.1.3 Execution Model

Here we briefly describe the execution model of the DV, which is the mechanism by which the
DV executes a “program”. In some sense the execution model is more akin to the operation of a
client/server application, rather than a traditional microprocessor, as the current DV instruction
set does not offer program control statements, such as branching statements, logical operations, etc.
Stated simply, the execution model of the DV is an instruction queue. Users specify the program
to be executed in the DV by placing instructions on the queue. No user can obtain exclusive
access to the queue, and instructions are executed on a first-come-first-serve basis. Hence, there
are no guarantees that a given program will produce the same results, if multiple users are queuing
instructions simultaneously.

Depending upon the implementation of the DV, multiple instructions within the queue could
be executed simultaneously, as long as the implementation can ensure that there are no conflicts
in doing so (in other words, the end results of parallel execution should be indistinguishable from
sequential execution). For example, an instruction performing the arithmetic operation A=B+C,
thus utilizing registers A,B and C, can execute concurrently with an add_grid_str instruction
that adds grids to register D.

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 135

B.2 Current Implementation

In this section we briefly describe some of the details of our current implementation of the DV.

The majority of the code for the DV is written in C. The register structure, including all sub-
structures discussed in Section B.1.1, are implemented as C data structures. In particular, all
current user-definable attributes are hard-coded within the C data structures 2. Thus, as C does
not support private data structures, there is no mechanism to enforce the integrity of the internal
state of the DV — it is up to the user to respect the implied “read-only” status of the register, and
only modify their contents via the supplied instruction set.

The instructions described in Section B.1.2 are implemented as C functions, and hence a “pro-
gram” running on the DV is a C subroutine that calls instruction functions. Some of the instruc-
tions supply an additional return value above that specified in Section B.1.2; this return value
denotes success or failure of a particular instruction (for instance, if there is insufficient memory
for an add_grid_str instruction to add the grid to the register, then an error will be returned).
The DV specification could be extended to allow for such error flags, however, some of the errors
are implementation specific, and so we have not added these flags to the specification yet. The
sequence of keys currently used in gridemp are (in order): time, grid dimension, x;, z2, €3, Ny1,
N2 and N,3, where x1,Z2,x3 denote spatial coordinates, and Ny1, N2, N3 denote array sizes of
the corresponding grid dimensions.

There are currently two programs running on the DV. The first is a TCP/IP server that receives
grid function data (in sdf format —see [106] for a description of this format). The only instruction
it ever issues is add_grid_str, after receiving sdf data. The second program is a GUI-based
interface to the DV, allowing the user, via “point-and-click” operations, to view the current register
structures in the DV, and to issue various instructions to manipulate the registers. In addition,
the GUI offers a visualization front-end, providing users with the ability to view 2D grid functions
as surface plots. The GUI was written with the aid of Xforms [113], and the visualization routines
with OpenGL [114]. See Figures B.2-B.4 below for sample screen shots of the DV.

At this stage there is no explicit instruction queue. An instruction is executed whenever the
corresponding function implementing the instruction is executed. The two programs (the TCP/IP
server and GUI interface) do run concurrently, and access the various data structures using the
semaphore mechanism provided by the Linux operating system, to avoid conflicts.

B.2.1 Generalized Index Vector format

In the present version of the DV, the generalized index vector option of the sequential iterator (see
Section B.1.2) is specified via a character string, and has the format

t=<ivec>;1l=<ivec>; [cb=x1,x2,y2,y2,... | ib=i1,i2,j1,j2,...]

(ivec) is an indez vector as implemented in the sdf library [106], and offers a convenient notation
for specifying sequences of integers. An example of an index vector is “1,3,5-10/2,15-*”; single
numbers are interpreted verbatim, a set ny — na/s denotes the sequence ny,ny + s,n1 + 2s, ..., na,
and an asterisk denotes the last valid index of the relevant data structure. The ¢t = (ivec) statement
selects a sequence of times (1 to the number of time structures within a register, with 1 being the
earliest time), and the [= (ivec) statement selects a sequence of levels (1 to the number of level
structures within a register, 1 being the coarsest level). The cb = x1, T2, Y2, Y2, ... term specifies
a coordinate bounding box, whereby all data outside of the rectangle [z;..z2,y;1..y2,...] will be
clipped. Similarly ib = iy,12, j1, Jo2, ... specifies an index bounding box, whereby each grid is clipped
relative to its array shape [1..N;,1..N,,...]. Only one of the coordinate or index bounding box
statements may be specified within a generalized index vector; any combination of a time index

2In the future it may be useful to solidify this aspect of the specification, i.e. provide instructions to dynamically
define and access user-definable attributes.

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 136

— - Data Vault EL

- -
=

Figure B.2: The DV GUI main window

vector, a level index vector, and a bounding box statement may be specified — multiple selections
are interpreted with a logical and.

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 137

4 DV functions =

Figure B.3: The DV GUI function window

APPENDIX B. DATA ANALYSIS AND VISUALIZATION 138

— - DV local view =21k

t=2.252863 [0.015048,0.031272] wi_phi

zscale=4.318e+01
[0.000,10.000], [-10.000,10.000]

Figure B.4: The DV visualization window

