
Proje
t 3(b): 2D Ultrarelativisti
 Fluid.

July 30, 2003

1 Introdu
tion

In this proje
t we generalize the 
ode produ
ed in Proje
t 2 to two dimensions (plus time).

We 
onsider the equations of a 
uid with an ultrarelativisti
 equation of state in Minkowski

spa
etime. In general all 
uid quantities only depend on 2 spatial 
oordinates, x and y, and

time. We again 
hoose a 
oordinate system in whi
h v

z

vanishes. As in Proje
t 2, good

general referen
es for this one are Mart��, et al. [1℄ and Font [2℄.

2 Equation of Motion

As we have seen in the previous proje
t the equations of motion 
an be 
al
ulated from:

�

T

ab

�

;a

= 0 (1)

where remember that the stress energy tensor is given by the following expression:

T

ab

= (�+ P )u

a

u

b

+ Pg

ab

; (2)

and we have ultrarelativisti
 equation of state P = (�� 1) �. We 
onsider the Minkowski

spa
etime with metri
, g

��

= �

��

= diagf�1; 1; 1; 1g, therefore the equations of motion 
an

be written as:

(T

��

)

;�

= 0: (3)

Now we introdu
e 
onservative variables analogous to the ones de�ned in Proje
t 2, see

Hawke [3℄:

� = (�+ P )W

2

� P; (4)

S

x

= (�+ P )W

2

v

x

; (5)

S

y

= (�+ P )W

2

v

y

; (6)

where we have used W

2

= (1� v

2

)

�1

with v

2

= v

x2

+ v

y2

. Note that v

i

= u

i

=u

t

where i take

values fx; yg and that W = u

t

. We left as an exer
ise to 
he
k that we 
an write equations

(3) in 
onservation law form:

�q

�t

+

�f

x

(q)

�x

+

�f

y

(q)

�y

= 0; (7)
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using the following ve
tors:

q =

2

6

4

�

S

x

S

y

3

7

5

; (8)

f

x

=

2

6

4

(� + P ) v

x

S

x

v

x

+ P

S

y

v

x

3

7

5

; f

y

=

2

6

4

(� + P ) v

y

S

x

v

y

S

y

v

y

+ P

3

7

5

: (9)

These are the equations that are suited for dis
retization. Note that in this 
ase we have 2

physi
al 
ux ve
tors.

3 2D Dis
retization

The dis
retization in two dimensions is a generalization of the dis
retization in one dimension.

Starting from the 
ontinuous equations in di�erential form, (7), and taking the average over

(i, j) (i+1/2, j)

(i, j+1/2)

(i, j−1/2)

y

x

(i−1/2, j)

x∆

∆ y

Figure 1: In this Figure we 
an see the spatial 
ell stru
ture. The dots represent the points

where the spatial averages of the 
onservation variables,
�
q

n

i j

, lie. Note that this quantities

are pla
ed on full time steps, i.e. t

n

, t

n+1

, et
, ... The squares represent the positions of the


uxes F

x

n+1=2

i+1=2 j

and F

y

n+1=2

i j+1=2

whi
h are positioned on the half step, i.e. t

n+1=2

a spa
e time 
ell C

n+1=2

i j

� (t

n

; t

n+1

)� (x

i�1=2

; x

i

i+1=2

)� (y

j�1=2

; y

j+1=2

), we get the following

expression:

�
q

n+1

i j

�
�
q

n

i j

�t

+

F

x

n+1=2

i+1=2 j

� F

x

n+1=2

i�1=2 j

�x

+

F

y

n+1=2

i j+1=2

� F

y

n+1=2

i j�1=2

�y

= 0 (10)
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where �t = t

n+1

� t

n

, �x = x

i+1=2

� x

i�1=2

and �y = y

j+1=2

� y

j�1=2

and we have de�ned

the following average quantities:

�
q

n

i j

�

1

�x�y

Z

x

i+1=2

x

i�1=2

Z

y

j+1=2

y

j�1=2

q

n

(t

n

; x; y)dxdy; (11)

F

x

n+1=2

i+1=2 j

�

1

�t�y

Z

t

n+1

t

n

Z

y

j+1=2

y

j�1=2

f

x

�

t; x

i+1=2

; y

�

dtdy; (12)

F

y

n+1=2

i j+1=2

�

1

�t�x

Z

t

n+1

t

n

Z

x

j+1=2

x

j�1=2

f

y

�

t; x; y

j+1=2

�

dtdx: (13)

In Figure 2 you 
an see the position on the spa
etime of the quantities previously de�ned.

Figure 2: Stru
ture of one 
ell C

n+1=2

i j

. The bottom plane represents the spatial surfa
e

t

n

while the top one is t

n+1

. The blue spheres on these planes are the spatial averages

�
q

n

i j

and
�
q

n+1

i j

. The red spheres, on the left and far right, are lo
ated at the positions of

spa
etime where the numeri
al 
uxes in the x dire
tion, F

x

n+1=2

i+1=2 j

and F

x

n+1=2

i�1=2 j

, are lo
ated.

Similarly the green spheres, on front and behind fa
es, are lo
ated at the positions where

the numeri
al 
uxes in the y dire
tion, F

y

n+1=2

i j+1=2

and F

y

n+1=2

i j�1=2

, are pla
ed. Note that the

ea
h sphere 
orresponds to an average of a 
ertain quantity over the fa
e of the 
ube where

it is pla
ed.

4 Roe Solver

The pro
edure to 
al
ulate the Roe 
uxes is identi
al as in the one dimensional 
ase. We

will 
onsider two di�erent linearizations depending on whi
h 
ux we want to 
al
ulate. For
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the x numeri
al 
ux we solve the following problem at the 
ell interfa
es lo
ated at x

i+1=2

:

�q

�t

+

�f

x

�q

�q

�x

= 0 (14)

and for the y, at the y

j+1=2

interfa
es:

�q

�t

+

�f

y

�q

�q

�y

= 0 (15)

The result for the Roe 
ux in the x dire
tion is:

F

x

Roe

i+1=2 j

=

1

2

"

f

x

�

~
p

R

i+1=2 j

�

+ f

x

�

~
p

L

i+1=2 j

�

�

X

�

j�

x

�

j!

x

�

r

x

�

#

; (16)

and the one in the y dire
tion:

F

y

Roe

i j+1=2

=

1

2

"

f

y

�

~
p

R

i j+1=2

�

+ f

y

�

~
p

L

i j+1=2

�

�

X

�

j�

y

�

j!

y

�

r

y

�

#

: (17)

Now we have four groups of re
onstru
ted variables. Re
onstru
ted variables along the x di-

re
tion, (
~
p

R

i+1=2 j

;
~
p

L

i+1=2 j

) and the re
onstru
ted variables along the y dire
tion (
~
p

R

i j+1=2

;
~
p

L

i j+1=2

).

In the x dire
tion we 
al
ulate the re
onstru
tion of the primitive variables in a similar way

we did in the one dimensional 
ase:

~
p

L

i+1=2 j

=
�
p

i j

+ �

i j

�

x

i+1=2

� x

i

�

; (18)

~
p

R

i+1=2 j

=
�
p

i+1 j

+ �

i+1 j

�

x

i+1=2

� x

i+1

�

; (19)

where �

i j

is:

�

i j

= minmod

�

s

i�1=2 j

; s

i+1=2 j

�

: (20)

Here:

s

i+1=2 j

=

�
p

i+1 j

�
�
p

i j

x

i+1

� x

i

; (21)

with minmod de�ned exa
tly the same way as in Proje
t 2. Analogously you 
an 
al
ulate

the re
onstru
ted variables along the y dire
tion inter
hanging the x by the y indexes and


oordinates.

In formulas (16) and (17) we also have the 
hara
teristi
 stru
ture of the two Ja
obian

matri
es:

A

x

=

�f

x

�q

�

�

�

�

�

1=2 (
~
q

R

i+1=2 j

+
~
q

L

i+1=2 j

)

; A

y

=

�f

y

�q

�

�

�

�

�

1=2 (
~
q

R

i j+1=2

+
~
q

L

i j+1=2

)

: (22)

As before (�

a

�

; r

a

�

; !

a

�

) are the eigenvalues, right eigenve
tors and the jumps in the 
hara
-

teristi
 variables of the matrix A

i

with i taking values fx; yg, note that now � takes values

(1; 2; 3)

1

be
ause we have 3 equations and therefore 3� 3 matri
es. The jumps in this 
ase

are still de�ned by:

~
q

R

i+1=2 j

�
~
q

L

i+1=2 j

=

X

�

!

x

�

r

x

�

: (23)

1

As in Proje
t 2 here we are not using the 
onvention in Proje
t 1, although � is a Greek index it labels

the equation number, it is not a spa
etime index.
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And analogously for the jumps along y. In the one dimensional 
ase we 
ould solve this

equation easily to get the values of !

�

is terms of the di�eren
es
~
q

R

�
~
q

L

and the right

eigenve
tors r

�

. In this 
ase it requires a little bit more algebra. It is useful to introdu
e the

left eigenve
tors de�ned by:

l

x

�

A

x

= �

�

l

x

�

: (24)

Using the appropriate normalization the matrix produ
ed by setting the left eigenve
tors on

matrix form row by row is the inverse of the matrix produ
ed setting the right eigenve
tors


olumn by 
olumn. This implies that:

l

x

�

�

�

~
q

R

i+1=2 j

�
~
q

L

i+1=2 j

�

T

= !

x

�

: (25)

An alternative to this pro
edure is to numeri
ally solve the system of equations (23) for !

x

�

.

As before the Roe 
uxes (16) and (17) when evaluated using the 
uid quantities de�ned on

t

n

are only �rst order approximations to the real numeri
al 
uxes de�ned by (12) and (13)

be
ause of the non-linearity of the equations. In order to make the time step se
ond order in

the absen
e of sho
ks, we set the whole pro
edure in a se
ond order Runge-Kutta integration

step as in the one dimensional 
ase.

Chara
teristi
 Stru
ture

In the following expressions 


s

=

p

�� 1 stands for the speed of sound in the 
uid

q

�P=��.

For A

x

, the eigenvalues are:

�

x

o

= v

x

; (26)

�

x

�

=

1

1� v

2




2

s

�

v

x

�

1� 


2

s

�

� 


s

q

(v

2

� 1) (


2

s

v

2

� 1 + v

x2

(1� 


2

s

))

�

: (27)

Right eigenve
tors:

r

x

o

=

2

6

4

2v

y

= (1 + v

2

� 2v

x2

)

2v

y

v

x

= (1 + v

2

� 2v

x2

)

1

3

7

5

; (28)

r

x

�

=

2

6

6

6

4

(1� v

x2

)

�

v

x

� �

x

�

�

(1� 


2

s

v

2

)

(1� v

x2

)

h�

�

x

�

v

x

� 1

�




2

s

(1� v

2

) + v

x

(1� 


2

s

)

�

v

x

� �

x

�

�i

v

y

h




2

s

�

�

x

�

(1 + v

x2

)v

2

� v

x2

�

x

�

� 2v

x

v

2

�

+ (1� 


2

s

) v

x2

�

�

x

�

� v

x

�

+ (


2

s

+ 1) v

x

� �

x

�

i

3

7

7

7

5

:

(29)

Left eigenve
tors:

l

x

o

=

"

�

v

y

(1 + v

2

� 2v

x2

)

(1� v

x2

) (1� v

2

)

;

v

y

v

x

(1 + v

2

� 2v

x2

)

(1� v

x2

) (1� v

2

)

;

1� v

2

+ 2v

y2

1� v

2

#

; (30)

l

x

�

=

�

�

x

2

6

6

6

6

6

6

6

6

6

4

�


2

s

�

x

�

v

x3

v

2

+ 3


2

s

v

x

(v

y2

)

�

v

x

� �

x

�

�

+

(


2

s

+ 1) (1� v

x2

) + (


2

s

+ 1) (v

y2

) + (


2

s

+ 1)�

x

�

v

x

(3v

x2

� 2)+

�

x

�

v

x

(3� 4v

x2

) + v

x4

� (v

y2

)� 1

[1 + (2


2

s

� 1 + 2v

x2




2

s

) v

x2

℄ v

x

+ (�3


2

s

� v

x2




2

s

) v

x

v

2

+

[�1 + (1� 4v

x2




2

s

) v

x2

+ (3v

x2




2

s

+ 


2

s

) v

2

℄�

x

�

�2


2

s

v

y

(1� v

x2

)

�

1� 2�

x

�

v

x

+ v

x2

�

3

7

7

7

7

7

7

7

7

7

5

; (31)
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�

x

=

�

1� v

x2

�

3




2

s

�

�

x

�

� �

x

+

� �

1� v

2

� �

1� 


2

s

v

2

�

: (32)

For A

y

: The eigenvalues are:

�

y

o

= v

y

; (33)

�

y

�

=

1

1� v

2




2

s

�

v

y

�

1� 


2

s

�

� 


s

q

(v

2

� 1) (


2

s

v

2

� 1 + v

y2

(1� 


2

s

))

�

: (34)

The right eigenve
tors:

r

y

o

=

2

6

4

2v

x

= (1 + v

2

� 2v

y2

)

1

2v

y

v

x

= (1 + v

2

� 2v

y2

)

3

7

5

; (35)

r

y

�

=

2

6

4

(1� v

y2

) (v

y

� �

y

�

) (1� 


2

s

v

2

)

v

x

[


2

s

(�

y

�

(1 + v

y2

)v

2

� v

y2

�

y

�

� 2v

y

v

2

) + (1� 


2

s

) v

y2

(�

y

�

� v

y

) + (


2

s

+ 1) v

y

� �

y

�

℄

(1� v

y2

) [(�

y

�

v

y

� 1) 


2

s

(1� v

2

) + v

y

(1� 


2

s

) (v

y

� �

y

�

)℄

3

7

5

:

(36)

Left Eigenve
tors:

l

y

o

=

"

�

v

x

(1 + v

2

� 2v

y2

)

(1� v

y2

) (1� v

2

)

;

1� v

2

� 2v

x2

1� v

2

;

v

x

v

y

(1 + v

2

� 2v

y2

)

(1� v

y2

) (1� v

2

)

#

; (37)

l

y

�

=

�

�

y

2

6

6

6

6

6

6

6

6

4

�


2

s

�

y

�

v

y3

v

2

+ 3


2

s

v

y

(v

x2

) (v

y

� �

y

�

)+

(


2

s

+ 1) (1� v

y2

) + (


2

s

+ 1) (v

x2

) + (


2

s

+ 1)�

y

�

v

y

(3v

y2

� 2)+

�

y

�

v

y

(3� 4v

y2

) + v

y4

� (v

x2

)� 1

�2


2

s

v

x

(1� v

y2

) (1� 2�

y

�

v

y

+ v

y2

)

[1 + (2


2

s

� 1 + 2


2

s

v

y2

) v

y2

℄ v

y

+ (�3


2

s

� 


2

s

v

y2

) v

y

v

2

+

[�1 + (1� 4


2

s

v

y2

) v

y2

+ (3


2

s

v

y2

+ 


2

s

) v

2

℄�

y

�

3

7

7

7

7

7

7

7

7

5

; (38)

�

y

=

�

1� v

y2

�

3




2

s

(�

y

�

� �

y

+

)

�

1� v

2

� �

1� 


2

s

v

2

�

: (39)

Boundary Conditions and Cell Stru
ture

In this se
tion we explain how the boundary 
onditions are set in two dimensions. The

pro
edure is 
ompletely analogous to the one in Proje
t 2 using ghost 
ells. RNPL produ
es

a mesh of points of size N

x

by N

y

that we will 
onsider to be 
entred at positions (x

i

; y

j

). In

Figure 3 we show the spatial 
ell stru
ture, in
luding ghost 
ells. This grid of points in
lude

the 
entres of the ghost 
ells. In order to set approximate outgoing boundary 
onditions we


opy the values of the 
onservative variables in the last physi
al 
ell into the ghost 
ells:

q

1 j

= q

3 j

(40)

q

2 j

= q

3 j

(41)

q

N

x

�1 j

= q

N

x

�2 j

(42)

q

N

x

j

= q

N

x

�2 j

(43)

where q is one of the 
onservative variables and j take values on 1; :::; N

y

. Inter
hanging the

x and y indexes we get the equations for the boundary 
onditions in y.
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Figure 3: Cell stru
ture on a spatial surfa
e with 2 ghost 
ells per boundary and per dire
tion

(N

gx

= N

gy

= 2). The ghost 
ells are the shaded areas. Note that the points (x

i

; y

j

) are

where the q

n

i j

are 
al
ulated. In order to 
al
ulate the evolution of the interior points, points

with 
oordinates (x

i

; y

j

) with i 2 fN

gx

+1; :::; N

x

�N

gx

g and j 2 fN

gy

+1; :::; N

y

�N

gy

g, we

need to 
al
ulate the x 
uxes, F

x

n+1=2

i+1=2 j

, at positions (x

i+1=2

; y

j

) with i 2 fN

gx

; :::; N

x

�N

gx

g

and j 2 fN

gy

+ 1; N

y

� N

gy

g. Similarly we need to 
al
ulate the y 
uxes, F

y

n+1=2

i j+1=2

, at

positions (x

i

; y

j+1=2

) with i 2 fN

gx

+1; :::; N

x

�N

gx

g and j 2 fN

gy

; :::; N

y

�N

gy

g. Note that

x

1

= x

min

, x

Nx

= x

max

, y

1

= y

min

and y

Ny

= y

max

.

7



PROBLEM 3 a) Using the 1-D ultrarelativisti
 
ode that you have produ
ed in Proje
t 2

as a template write a 2 dimensional 
ode that solves equations (7). Note that now before

updating the 
onservative variables you need to 
al
ulate both numeri
al 
uxes in the x and

y dire
tions. After the 
onservative variables have been updated, both at the half and full

step, you will need to 
oor � , using the following equation:

� = maxf�; 
oor +

q

S

x

2

+ S

y

2

g: (44)

You also need to �nd equations in order to 
al
ulate the primitive variables from the 
on-

servative ones inverting equations (4-6).

Ensure that your 
ode 
an evolve both smooth and dis
ontinuous initial data. Setting

initial data that is 
onstant along y and dis
ontinuous in x solve for 1 dimensional Riemann

problem and 
ompare with the solution obtained from your 
ode in Proje
t 2. Inter
hange

x and y and solve for the Riemann problem along the other dire
tion. Make sure that your


ode also works for Riemann problems along x+ y, setting initial data su
h that is 
onstant

along x� y.

The following problems are only a 
ouple of suggestions of systems you 
an study. Choose

the one, or ones, that interests you most and go for it, be adventurous:

Problem 3 b) There exists a very well known instability usually 
alled Kelvin Helmholtz

instability or instability of tangential dis
ontinuities, see Landau and Lifshitz [4℄. Although

the real instability happens for 
uids with the ideal equation of state (more generally 
uids

that 
an sustain a 
onta
t dis
ontinuity) we 
an get an approximation of it using the ul-

trarelativisti
 
uid 
ode. Set initial data su
h that the XY plane has two di�erent regions

divided by the following fun
tion:

x =

(

x

d

if y < y

d

x

d

+ Asin (w�(y � y

d

)) if y > y

d

:

(45)

Try to 
hoose values A; w; y

d

; x

d

su
h that the dis
ontinuity is almost a straight line with

a small 
urvature for y > y

d

. Produ
e initial data for the primitive variables su
h that the

density is 
onstant a
ross the dis
ontinuity and the 
omponent of the velo
ity tangential to

the surfa
e is large (less than 1) in one of the region and zero on the other. The perpendi
ular


omponent of the velo
ity should be zero on both regions. In the Lab web page you 
an �nd

a 
ouple of MPEG movies showing this evolution.

Problem 3 
) A very rudimentary way to produ
e a jet is to set the 
onservative variables

in a region of the ghost 
ells to have 
onstant values, independent of the values of the physi
al


ells. Set initial 
onditions su
h that you have a 
onstant density of � = 6:0 and zero velo
ity

on all the integration range. Choose a small region region in the boundary at x = x

min

with

values of y 
lose to the 
entre of grid and set the 
onservative variables to have values:

�

b

= 0:15; S

xb

= 0:14; S

yb

= 0 for � = 1:5 and floor = 10

�10

at every time step. This should

produ
e a jet of 
uid 
oming into the range of integration. You 
an set another jet 
oming

from the opposite boundary and make them 
ollide one into the other. In the Lab web page

you 
an �nd animations for this simulation.
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