
Using Multigrid to Solve Time Dependent
PDEs

Matthew W. Choptuik

CIAR Cosmology and Gravity Program

Department of Physics and Astronomy
University of British Columbia

Vancouver BC

MPI-AEI, Postdam Germany

SFB Videoseminar
Golm, Germany

February 4, 2008

For more detailed notes on multigrid, see

http://laplace.physics.ubc.ca/∼matt/Teaching/06Mexico/mexico06.pdf

Outline

• Motivation

• Review of multigrid (MG) for elliptic problems

• Application of multigrid to a model parabolic problem

• Summary & Comments

1

Motivation

• From time to time encounter time dependent PDEs in numerical relativity and
related fields that are “stiff”; i.e. whose solutions have a large dynamic range in
intrinsic time-scales (perhaps unbounded in the continuum limit)

• Frequently (but not always) these systems are of “parabolic” type

• Examples include

• Schrödinder equations appearing in treatment of Newtonian boson stars

• Certain type of coordinate conditions for lapse and shift (driver conditions)

• Geometrically-motivated PDEs other than Einstein’s equations, e.g. Ricci
flow

2

Motivation

• Assume that finite difference (FD) techniques are being used: stiffness implies
that time-implicit methods will be needed to avoid unnecessarily stringent
restrictions on time step, ∆t in terms of the spatial coordinate mesh spacings
∆xi, i = 1, . . . d (assume ∆xi = O(h) for all i)

• Key goal: Assuming typical number of grid points per edge of spatial
computational domain is n ∼ h−1, so that total number of points in spatial
mesh is N ∼ nd, want methods that can

1. Solve discrete equations with O(N) work per time step (optimal from
computational complexity point of view)

2. Allow for large time steps, i.e. ∆t ∼ h, especially if stiff equations are being
solved in concert with hyperbolic equations

• Multigrid techniques provide basis for such methods, and are applicable to
general systems of parabolic nature.

• To understand how this works, best to start with multigrid as applied to
time-independent PDEs, i.e. elliptic PDEs

3

Model elliptic problem

• Canonical model problem: 2-D Poisson equation

∇2u(x, y) ≡ uxx + uyy = f(x, y) (1)

on the unit square

Ω : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 (2)

with (homogeneous) Dirichlet boundary conditions

u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0 (3)

and f(x, y) a specified function

4

Discretization of model problem

• Adopt uniform discretization: single, constant mesh spacing, h, in each
coordinate direction

• Finite difference grid, Ωh, has n grid points in each direction, h = 1/(n− 1);
total number of points in discretization: N ≈ n2.

• Finite difference mesh points are defined by

{(xi, yj) ≡ ((i− 1) h, (j − 1) h) , i, j = 1, 2, · · ·n} (4)

and adopt standard notation for grid function values, ui,j

ui,j ≡ u(xi, yj) (5)

• Important note: Here and below will generally ignore treatment of boundary
conditions—in general need to be careful with their treatment when using MG,
particularly for case of non-Dirichlet conditions

5

Discretization of model problem

• Replace the continuum system (1) with a discrete version

Lhuh = fh (6)

• Here uh is the discrete solution, individual values denoted ui,j, Lh is the
discrete approximation of the differential operator, L ≡ ∂xx + ∂yy, and fh is
the discrete source function

• Need finite difference approximations for second derivatives uxx and uyy

• Use standard second-order, centred approximations:

uxx =
ui+1,j − 2ui,j + ui−1,j

h2
+ O(h2) (7)

uyy =
ui,j+1 − 2ui,j + ui,j−1

h2
+ O(h2) (8)

6

Discretization of model problem

• Get desired discretization of the Poisson equation:

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j

h2
= fi,j 2 ≤ i, j ≤ n− 1 (9)

• This equation may be applied at all interior points

• Dirichlet boundary conditions provide (trivial) equations for boundary values on
discrete domain:

u1,j = un,j = ui,1 = ui,n 1 ≤ i, j ≤ n (10)

• Discretization results in a large (N ×N), sparse linear system of equations:

Lu = f (11)

7

Relaxation

• Key idea for relaxation techniques intuitive

• Associate a single equation, corresponding single unknown, ui,j, with each
mesh point in Ωh

• Then repeatedly “sweep” through mesh, visiting each mesh point in some
prescribed order

• Each time point is visited, adjust value of unknown at grid point so
corresponding equation is (“instantaneously”) satisfied

• Adopt a “residual based” approach to locally satisfying the discrete equations

8

Relaxation

• Consider general form of discretized BVP

Lhuh = fh (12)

and recast in canonical form
Fh

[
uh

]
= 0 . (13)

• Quantity uh which appears above is the exact solution of the difference
equations

• Can generally only compute uh in the limit of infinite iteration

• Thus introduce ũh: “current” or “working” approximation to uh, labelling the
iteration number by n, and assuming iterative technique does converges, have

lim
n→∞

ũh = uh (14)

9

Relaxation

• Associated with ũh is residual, r̃h

r̃h ≡ Lhũh − fh (15)

or in terms of canonical form (13),

r̃h ≡ Fh
[
ũh

]
(16)

• For specific component (grid value) of residual, r̃h
i,j, drop the h superscript

r̃i,j =
[
Lhũh − fh

]
i,j
≡

[
Fh

[
ũh

]]
i,j

(17)

• For model problem have

r̃i,j = h−2 (ũi+1,j + ũi−1,j + ũi,j+1 + ũi,j−1 − 4ũi,j)− fi,j (18)

• Relaxation: adjust ũi,j so corresponding residual is “instantaneously” zeroed

10

Gauss-Seidel relaxation

• Gauss-Seidel relaxation: assuming lexicographic ordering of unknowns,
i = 1, 2, · · ·n, j = 1, 2, · · ·n, i index varies most rapidly, residual is

r̃i,j = h−2
(
ũ

(n)
i+1,j + ũ

(n+1)
i−1,j + ũ

(n)
i,j+1 + ũ

(n+1)
i,j−1 − 4ũ

(n)
i,j

)
− fi,j (19)

and corresponding Gauss-Seidel update is

ũ
(n+1)
i,j :=

1
4

(
ũ

(n)
i+1,j + ũ

(n+1)
i−1,j + ũ

(n)
i,j+1 + ũ

(n+1)
i,j−1 − h2fi,j

)
(20)

11

Gauss-Seidel relaxation—convergence

• Solution of discrete system equivalent to driving residual vector r̃

r̃ := Lhũ− f (21)

to 0

• Can write GS iteration in terms of action of (linear) operator (N ×N matrix),
G

r̃(n+1) = Gr̃(n) = G2 r̃(n−1) = G3 r̃(n−2) = · · · = Gn+1 r̃(0) (22)

• Convergence can then be discussed in terms of spectrum of G, in particular will
want G to be a contraction map, so will want spectral radius of G , ρ(G), to
satisfy

ρ(G) < 1 (23)

12

Gauss-Seidel relaxation—convergence

• Heuristically at least, can think of eigenvectors of G as having associated
frequency or, equivalently, wavelength as defined with respect to the mesh, Ωh

• Rate at which given frequency component of the residual r̃(n) is reduced by the
iteration is dependent on magnitude of corresponding eigenvalue

• Mode analysis (identical in spirit and implementation to Von Neumann analysis
for FD approximations to time-dependent PDEs) shows that, asymptotically,
convergence rate of GS iteration is dominated by slow convergence of lowest
frequency (longest wavelength) components, leading to

ρ(G) = 1−O(h2) (24)

so that it takes O(n2) sweeps (n is number of grid-pts per edge of Ωh) to
reduce the residual/solution error by any given constant factor

• Thus need O(N2) computational work to solve model problem

13

Illustration of action of GS iteration for model
problem

• For illustrative purposes, specify continuum solution of model problem

u(x, y) ≡ sin(πlx) sin(πly) (25)

where lx, ly ≥ 1 are integers, then compute corresponding source function

f(x, y) = −π2
(
l2x + l2y

)
sin(πlx) sin(πly) (26)

• Initialize solution to random values, uniformly distributed on [−1, 1], not least
since this will generate initial error/residual vectors with significant components
of all possible wavelengths; take lx = 1 and ly = 2

• Following animations show action of GS iteration on solution, solution error and
residual, for relaxation sweep numbers

n = 1, 2, . . . 127, 128, 256, 384, . . . 12800, 14080, 16440, . . . 128000 (27)

14

Effect of GS iteration on solution

15

Effect of GS iteration on solution error

16

Effect of GS iteration on residual

17

Convergence of GS iteration—summary

• GS is an abysmal way of solving the discrete model problem (and discretized
elliptic systems in general), but a very good way of smoothing the system
(i.e. of reducing high frequency components in the solution error and residual)

λ = 4h

Ω

Ω

h

2h

• In particular, GS (and other relaxation schemes) very effective for reducing
error/residual components on Ωh that cannot be represented on a 2:1 coarser
mesh, Ω2h, i.e. that are above the Nyquist limit on Ω2h, i.e. with wavelengths,
λ < 4h; generally takes some constant (i.e. h-independent) number of sweeps
to reduce magnitude of high-frequency components by given factor

18

Multigrid

• Key ideas

1. Use relaxation to smooth residuals/error on Ωh

2. As soon as required correction to solution is smooth, can compute a good
estimate for it via a coarse-grid problem, e.g. a problem on Ω2h

3. Once coarse problem is satisfactorily solved, use the coarse solution to
update fine-grid unknown appropriately

4. Apply 1. to 3. recursively: use problem on Ω4h to accelerate solution of
problem on Ω2h, Ω8h problem to accelerate Ω4h solution etc.

• Multigrid in a nutshell

• Use multi-scale (hierarchical) relaxation to efficiently smooth solution
error/residual on all frequency/wavelength scales

• To accomplish this, also need proper operators to transfer problems and
solutions from fine to coarse grids and vice versa; will not discuss these in any
detail here

19

Multigrid

• Use hierarchy of meshes Ωh,Ω2h,Ω4h,Ω8h, . . . (generally use 2:1 refinement
ratio for efficiency, algorithmic simplicity); label each distinct mesh spacing
with integer `

` = 1, 2, · · · `max (28)

where ` = 1 and ` = `max label coarsest and finest mesh spacings respectively

• Thus have

h`+1 =
1
2
h` n`+1 ∼ 2d n` (29)

• Use ` itself to denote resolution associated with a grid function, e.g. define u`

via
u` ≡ uh` (30)

• Note: General multigrid iteration involves solution of problems

L`u` = s` (31)

where, apart from the finest grid problem, the source function, s`, will not
coincide with the “right hand side of the PDE”, f `

20

Pseudo-code of typical multigrid iteration (V -cycle)

procedure vcycle (`, p, q)
Cycle from fine to coarse levels
do m = ` , 2 , −1

Apply pre-coarse-grid-correction (CGC) smoothing sweeps
do p times um := relax (um, sm, hm) end do
Set up coarse grid problem
[um−1, sm−1] := setup coarse (um, sm, hm)

end do
Solve coarsest-level problem
u1 := solve coarse (u1, s1, h1)
Cycle from coarse to fine levels
do m = 2 , ` , +1

Apply coarse-grid correction
um := update fine (um, um−1)
Apply post-CGC smoothing sweeps
do q times um := relax (um, sm, hm) end do

end do
end procedure

21

Effect of MG iteration on solution

• Apply 5 V -cycles (p = 1, q = 2), using same random initial conditions as
previously

• t label measures relaxation work in units of fine-grid relaxation sweep
(dominant cost for MG algorithm)

22

Effect of MG iteration on solution error

23

Effect of MG iteration on residual

24

Multigrid for time-dependent problems (at last!)

• Again, illustrate general technique using simple model problem: 2D diffusion
equation (heat equation) with homogeneous, Dirichlet boundary conditions

ut (t, x, y) = ∇2u = uxx + uyy (32)

on

Ω : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 , t ≥ 0 (33)

with initial conditions

u(0, x, y) = u0(x, y) (34)

(u0 specified) and boundary conditions

u(t, 0, y) = u(t, 1, y) = u(t, x, 0) = u(t, x, 1) = 0 (35)

25

Multigrid for diffusion equation

• Use fully-implicit O(h2) Crank-Nicholson approximation on uniform grid with
∆x = ∆y = h, ∆t = λh (in abuse of terminology, will refer to λ as “Courant
number”)

un+1
i,j − un

i,j

∆t
=

1
2

(
∆hun+1

i,j + ∆hun
i,j

)
(36)

where
∆hui,j = h−2 (ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4ui,j) (37)

• Identify uh
i,j ≡ un+1

i,j , then (36) is of the form

Lhuh = fh (38)

with

Lh ≡
[
∆t−1 − 1

2
∆h

]
fh ≡

[
∆t−1 +

1
2
∆h

]
un

i,j (39)

• Now use multigrid to solve (38) at every time step

26

MG solution of diffusion equation

• Initial data given by

u0(x, y) = exp
(
− ((x− 0.6) /0.05)2 − ((y − 0.7) /0.10)2

)
(40)

• λ = 0.0125: relatively small value chosen for purposes of animation

• Can use λ = 1.0 or larger, but for such large values, accuracy of calculation
suffers considerably

27

Computational cost

• Compare with another technique that can be used to compute O(h2) implicit
approximate solution of diffusion equation in O(N) time: Alternating Direction
Implicit Method (ADI)

• From ut = Lu = (∂xx + ∂yy)u have

un+1 = exp (∆tL) un (41)

or

exp
(
−∆t

2
L

)
un+1 = exp

(
∆t

2
L

)
un (42)

• Expanding to O(∆t2) = O(h2) accuracy, and denoting the usual O(h2)
approximation of L by Lh

(
1− ∆t

2
Lh

)
un+1 =

(
1 +

∆t

2
Lh

)
un (43)

28

Computational cost

• Straightforward to show that last expression can be “factored” as

(
1− ∆t

2
∂h

xx

) (
1− ∆t

2
∂h

yy

)
un+1 =

(
1 +

∆t

2
∂h

yy

) (
1 +

∆t

2
∂h

xx

)
un + O(h3)

(44)

where ∂h
xx and ∂h

yy are the usual O(h2) approximations of ∂xx and ∂yy

• Can then solve (44) using alternating sweeps in x and y directions. Each sweep
requires the solution of n tridiagonal systems in n unknowns.

• Total cost is O(n2) = O(N)

29

Scaling of computational cost for model problem

• Numerical experiments used nx− 1 = ny − 1 = n− 1 = 64, 128, 256, 512, 1024,
corresponding to discretization levels, ` = 1, 2, 3, 4 and 5, with a number of
time steps, n`

t = 2`−1n1
t

• Measured rate, R, of computation is κTCPU/(ntnxny) where κ is a normalizing
constant

• R should be constant for O(N) scaling

n RADI RMG

64 1.00 1.42
128 1.01 1.44
256 1.09 1.74
512 1.28 1.90
1024 1.15 2.10

• MG slowdown for larger N probably due to caching effects

30

Summary & comments

• Multigrid methods can be used to solve time-dependent finite difference
equations in O(N) time (N = number of points in spatial discretization)

• Most useful for PDEs that have “stiffness”, and thus generally require implicit
treatment to avoid need for unnecessarily small time steps (stability), bad
scaling of computational cost as h → 0

• Have illustrated technique for simple model problem: even in this case
performance of MG compares favorably to ADI

• However, in contrast to ADI and most other methods, MG readily generalizes to

• Evolution equations involving general elliptic operators on the RHSs (what
we encounter in general relativity, and other sets of geometric PDEs,
e.g. Ricci flow)

• Nonlinear equations

• Systems of equations

and O(N) performance can also be expected in these cases

31

