Using Multigrid to Solve Time Dependent PDEs

Matthew W. Choptuik

CIAR Cosmology and Gravity Program

Department of Physics and Astronomy University of British Columbia Vancouver BC

MPI-AEI, Postdam Germany

SFB Videoseminar Golm, Germany

February 4, 2008

For more detailed notes on multigrid, see

http://laplace.physics.ubc.ca/~matt/Teaching/06Mexico/mexico06.pdf

Outline

- Motivation
- Review of multigrid (MG) for elliptic problems
- Application of multigrid to a model parabolic problem
- Summary & Comments

Motivation

- From time to time encounter time dependent PDEs in numerical relativity and related fields that are "stiff"; i.e. whose solutions have a large dynamic range in intrinsic time-scales (perhaps unbounded in the continuum limit)
- Frequently (but not always) these systems are of "parabolic" type
- Examples include
 - Schrödinder equations appearing in treatment of Newtonian boson stars
 - Certain type of coordinate conditions for lapse and shift (driver conditions)
 - Geometrically-motivated PDEs other than Einstein's equations, e.g. Ricci flow

Motivation

- Assume that finite difference (FD) techniques are being used: stiffness implies that time-implicit methods will be needed to avoid unnecessarily stringent restrictions on time step, Δt in terms of the spatial coordinate mesh spacings $\Delta x^i, i=1,\ldots d$ (assume $\Delta x^i=O(h)$ for all i)
- Key goal: Assuming typical number of grid points per edge of spatial computational domain is $n \sim h^{-1}$, so that total number of points in spatial mesh is $N \sim n^d$, want methods that can
 - 1. Solve discrete equations with O(N) work per time step (optimal from computational complexity point of view)
 - 2. Allow for large time steps, i.e. $\Delta t \sim h$, especially if stiff equations are being solved in concert with hyperbolic equations
- Multigrid techniques provide basis for such methods, and are applicable to general systems of parabolic nature.
- To understand how this works, best to start with multigrid as applied to time-independent PDEs, i.e. elliptic PDEs

Model elliptic problem

Canonical model problem: 2-D Poisson equation

$$\nabla^2 u(x,y) \equiv u_{xx} + u_{yy} = f(x,y) \tag{1}$$

on the unit square

$$\Omega: 0 \le x \le 1 \,, \ 0 \le y \le 1 \tag{2}$$

with (homogeneous) Dirichlet boundary conditions

$$u(0,y) = u(1,y) = u(x,0) = u(x,1) = 0$$
(3)

and f(x,y) a specified function

Discretization of model problem

- Adopt *uniform* discretization: single, constant mesh spacing, h, in each coordinate direction
- Finite difference grid, Ω^h , has n grid points in each direction, h=1/(n-1); total number of points in discretization: $N\approx n^2$.
- Finite difference mesh points are defined by

$$\{(x_i, y_j) \equiv ((i-1)h, (j-1)h), i, j = 1, 2, \dots n\}$$
(4)

and adopt standard notation for grid function values, $u_{i,j}$

$$u_{i,j} \equiv u(x_i, y_j) \tag{5}$$

 Important note: Here and below will generally ignore treatment of boundary conditions—in general need to be careful with their treatment when using MG, particularly for case of non-Dirichlet conditions

Discretization of model problem

• Replace the continuum system (1) with a discrete version

$$L^h u^h = f^h (6)$$

- Here u^h is the discrete solution, individual values denoted $u_{i,j}$, L^h is the discrete approximation of the differential operator, $L \equiv \partial_{xx} + \partial_{yy}$, and f^h is the discrete source function
- Need finite difference approximations for second derivatives u_{xx} and u_{yy}
- Use standard second-order, centred approximations:

$$u_{xx} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + O(h^2)$$
(7)

$$u_{yy} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{h^2} + O(h^2)$$
(8)

Discretization of model problem

Get desired discretization of the Poisson equation:

$$\frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{h^2} = f_{i,j} \qquad 2 \le i, j \le n-1$$
 (9)

- This equation may be applied at all interior points
- Dirichlet boundary conditions provide (trivial) equations for boundary values on discrete domain:

$$u_{1,j} = u_{n,j} = u_{i,1} = u_{i,n}$$
 $1 \le i, j \le n$ (10)

• Discretization results in a large $(N \times N)$, sparse linear system of equations:

$$Lu = f (11)$$

Relaxation

- Key idea for relaxation techniques intuitive
- Associate a single equation, corresponding single unknown, $u_{i,j}$, with each mesh point in Ω^h
- Then repeatedly "sweep" through mesh, visiting each mesh point in some prescribed order
- Each time point is visited, adjust value of unknown at grid point so corresponding equation is ("instantaneously") satisfied
- Adopt a "residual based" approach to locally satisfying the discrete equations

Relaxation

Consider general form of discretized BVP

$$L^h u^h = f^h (12)$$

and recast in canonical form

$$F^h \left[u^h \right] = 0. \tag{13}$$

- Quantity \boldsymbol{u}^h which appears above is the exact solution of the difference equations
- ullet Can generally only compute u^h in the limit of infinite iteration
- Thus introduce \tilde{u}^h : "current" or "working" approximation to u^h , labelling the iteration number by n, and assuming iterative technique does converges, have

$$\lim_{n \to \infty} \tilde{u}^h = u^h \tag{14}$$

Relaxation

• Associated with \tilde{u}^h is residual, \tilde{r}^h

$$\tilde{r}^h \equiv L^h \tilde{u}^h - f^h \tag{15}$$

or in terms of canonical form (13),

$$\tilde{r}^h \equiv F^h \left[\tilde{u}^h \right] \tag{16}$$

• For specific *component* (grid value) of residual, $\tilde{r}_{i,j}^h$, drop the h superscript

$$\tilde{r}_{i,j} = \left[L^h \tilde{u}^h - f^h \right]_{i,j} \equiv \left[F^h \left[\tilde{u}^h \right] \right]_{i,j} \tag{17}$$

For model problem have

$$\tilde{r}_{i,j} = h^{-2} \left(\tilde{u}_{i+1,j} + \tilde{u}_{i-1,j} + \tilde{u}_{i,j+1} + \tilde{u}_{i,j-1} - 4\tilde{u}_{i,j} \right) - f_{i,j}$$
(18)

• Relaxation: adjust $\tilde{u}_{i,j}$ so corresponding residual is "instantaneously" zeroed

Gauss-Seidel relaxation

• Gauss-Seidel relaxation: assuming lexicographic ordering of unknowns, $i=1,2,\cdots n,\ j=1,2,\cdots n,\ i$ index varies most rapidly, residual is

$$\tilde{r}_{i,j} = h^{-2} \left(\tilde{u}_{i+1,j}^{(n)} + \tilde{u}_{i-1,j}^{(n+1)} + \tilde{u}_{i,j+1}^{(n)} + \tilde{u}_{i,j-1}^{(n+1)} - 4\tilde{u}_{i,j}^{(n)} \right) - f_{i,j}$$
 (19)

and corresponding Gauss-Seidel update is

$$\tilde{u}_{i,j}^{(n+1)} := \frac{1}{4} \left(\tilde{u}_{i+1,j}^{(n)} + \tilde{u}_{i-1,j}^{(n+1)} + \tilde{u}_{i,j+1}^{(n)} + \tilde{u}_{i,j-1}^{(n+1)} - h^2 f_{i,j} \right)$$
(20)

Gauss-Seidel relaxation—convergence

ullet Solution of discrete system equivalent to driving residual vector $ilde{\mathbf{r}}$

$$\tilde{\mathbf{r}} := \mathbf{L}^h \tilde{\mathbf{u}} - \mathbf{f} \tag{21}$$

to 0

• Can write GS iteration in terms of action of (linear) operator $(N \times N \text{ matrix})$, G

$$\tilde{\mathbf{r}}^{(n+1)} = \mathbf{G} \, \tilde{\mathbf{r}}^{(n)} = \mathbf{G}^2 \, \tilde{\mathbf{r}}^{(n-1)} = \mathbf{G}^3 \, \tilde{\mathbf{r}}^{(n-2)} = \dots = \mathbf{G}^{n+1} \, \tilde{\mathbf{r}}^{(0)}$$
 (22)

• Convergence can then be discussed in terms of spectrum of ${\bf G}$, in particular will want ${\bf G}$ to be a contraction map, so will want spectral radius of ${\bf G}$, $\rho({\bf G})$, to satisfy

$$\rho(\mathbf{G}) < 1 \tag{23}$$

Gauss-Seidel relaxation—convergence

- Heuristically at least, can think of eigenvectors of G as having associated frequency or, equivalently, wavelength as defined with respect to the mesh, Ω^h
- ullet Rate at which given frequency component of the residual $ar{\mathbf{r}}^{(n)}$ is reduced by the iteration is dependent on magnitude of corresponding eigenvalue
- Mode analysis (identical in spirit and implementation to Von Neumann analysis
 for FD approximations to time-dependent PDEs) shows that, asymptotically,
 convergence rate of GS iteration is dominated by slow convergence of lowest
 frequency (longest wavelength) components, leading to

$$\rho(\mathbf{G}) = 1 - O(h^2) \tag{24}$$

so that it takes $O(n^2)$ sweeps (n is number of grid-pts per edge of Ω^h) to reduce the residual/solution error by any given constant factor

ullet Thus need ${\cal O}(N^2)$ computational work to solve model problem

Illustration of action of GS iteration for model problem

For illustrative purposes, specify continuum solution of model problem

$$u(x,y) \equiv \sin(\pi l_x)\sin(\pi l_y) \tag{25}$$

where $l_x, l_y \geq 1$ are integers, then *compute* corresponding source function

$$f(x,y) = -\pi^2 \left(l_x^2 + l_y^2 \right) \sin(\pi l_x) \sin(\pi l_y)$$
 (26)

- Initialize solution to random values, uniformly distributed on [-1,1], not least since this will generate initial error/residual vectors with significant components of all possible wavelengths; take $l_x=1$ and $l_y=2$
- Following animations show action of GS iteration on solution, solution error and residual, for relaxation sweep numbers

$$n = 1, 2, \dots 127, 128, 256, 384, \dots 12800, 14080, 16440, \dots 128000$$
 (27)

Effect of GS iteration on solution

Effect of GS iteration on solution error

Effect of GS iteration on residual

Convergence of GS iteration—summary

• GS is an abysmal way of *solving* the discrete model problem (and discretized elliptic systems in general), but a very good way of *smoothing* the system (i.e. of reducing high frequency components in the solution error and residual)

• In particular, GS (and other relaxation schemes) very effective for reducing error/residual components on Ω^h that cannot be represented on a 2:1 coarser mesh, Ω^{2h} , i.e. that are above the Nyquist limit on Ω^{2h} , i.e. with wavelengths, $\lambda < 4h$; generally takes some constant (i.e. h-independent) number of sweeps to reduce magnitude of high-frequency components by given factor

Multigrid

Key ideas

- 1. Use relaxation to *smooth* residuals/error on Ω^h
- 2. As soon as required correction to solution is smooth, can compute a good estimate for it via a coarse-grid problem, e.g. a problem on Ω^{2h}
- 3. Once coarse problem is satisfactorily solved, use the coarse solution to update fine-grid unknown appropriately
- 4. Apply 1. to 3. recursively: use problem on Ω^{4h} to accelerate solution of problem on Ω^{2h} , Ω^{8h} problem to accelerate Ω^{4h} solution etc.

Multigrid in a nutshell

- Use multi-scale (hierarchical) relaxation to efficiently smooth solution error/residual on all frequency/wavelength scales
- To accomplish this, also need proper operators to transfer problems and solutions from fine to coarse grids and vice versa; will not discuss these in any detail here

Multigrid

• Use hierarchy of meshes $\Omega^h, \Omega^{2h}, \Omega^{4h}, \Omega^{8h}, \dots$ (generally use 2:1 refinement ratio for efficiency, algorithmic simplicity); label each distinct mesh spacing with integer ℓ

$$\ell = 1, 2, \dots \ell_{\text{max}} \tag{28}$$

where $\ell=1$ and $\ell=\ell_{\rm max}$ label coarsest and finest mesh spacings respectively

Thus have

$$h_{\ell+1} = \frac{1}{2}h_{\ell} \qquad n_{\ell+1} \sim 2^d n_{\ell}$$
 (29)

• Use ℓ itself to denote resolution associated with a grid function, e.g. define u^ℓ via

$$u^{\ell} \equiv u^{h_{\ell}} \tag{30}$$

Note: General multigrid iteration involves solution of problems

$$L^{\ell}u^{\ell} = s^{\ell} \tag{31}$$

where, apart from the finest grid problem, the source function, s^{ℓ} , will not coincide with the "right hand side of the PDE", f^{ℓ}

Pseudo-code of typical multigrid iteration (V-cycle)

```
procedure vcycle (\ell, p, q)
  Cycle from fine to coarse levels
  do m = \ell, 2, -1
     Apply pre-coarse-grid-correction (CGC) smoothing sweeps
     do p times u^m := \text{relax}(u^m, s^m, h^m) end do
     Set up coarse grid problem
     [u^{m-1}, s^{m-1}] := \mathtt{setup\_coarse}(u^m, s^m, h^m)
  end do
  Solve coarsest-level problem
  u^1 := \mathtt{solve\_coarse}(u^1, s^1, h^1)
  Cycle from coarse to fine levels
  do m = 2, \ell, +1
    Apply coarse-grid correction
     u^m := \mathtt{update\_fine}(u^m, u^{m-1})
    Apply post-CGC smoothing sweeps
    do q times u^m := \operatorname{relax}(u^m, s^m, h^m) end do
  end do
end procedure
```

Effect of MG iteration on solution

- Apply 5 V-cycles ($p=1,\ q=2$), using same random initial conditions as previously
- t label measures relaxation work in units of fine-grid relaxation sweep (dominant cost for MG algorithm)

Effect of MG iteration on solution error

Effect of MG iteration on residual

Multigrid for time-dependent problems (at last!)

 Again, illustrate general technique using simple model problem: 2D diffusion equation (heat equation) with homogeneous, Dirichlet boundary conditions

$$u_t(t, x, y) = \nabla^2 u = u_{xx} + u_{yy}$$
 (32)

on

$$\Omega: 0 \le x \le 1 \,, \ 0 \le y \le 1 \,, \ t \ge 0 \tag{33}$$

with initial conditions

$$u(0, x, y) = u_0(x, y) (34)$$

 $(u_0 \text{ specified})$ and boundary conditions

$$u(t,0,y) = u(t,1,y) = u(t,x,0) = u(t,x,1) = 0$$
(35)

Multigrid for diffusion equation

• Use fully-implicit $O(h^2)$ Crank-Nicholson approximation on uniform grid with $\Delta x = \Delta y = h, \ \Delta t = \lambda h$ (in abuse of terminology, will refer to λ as "Courant number")

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} = \frac{1}{2} \left(\Delta^h u_{i,j}^{n+1} + \Delta^h u_{i,j}^n \right)$$
 (36)

where

$$\Delta^{h} u_{i,j} = h^{-2} \left(u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} \right) \tag{37}$$

• Identify $u_{i,j}^h \equiv u_{i,j}^{n+1}$, then (36) is of the form

$$L^h u^h = f^h (38)$$

with

$$L^{h} \equiv \left[\Delta t^{-1} - \frac{1}{2} \Delta^{h} \right] \qquad f^{h} \equiv \left[\Delta t^{-1} + \frac{1}{2} \Delta^{h} \right] u_{i,j}^{n}$$
 (39)

Now use multigrid to solve (38) at every time step

MG solution of diffusion equation

Initial data given by

$$u_0(x,y) = \exp\left(-\left((x-0.6)/0.05\right)^2 - \left((y-0.7)/0.10\right)^2\right) \tag{40}$$

- $\lambda = 0.0125$: relatively small value chosen for purposes of animation
- Can use $\lambda=1.0$ or larger, but for such large values, accuracy of calculation suffers considerably

Computational cost

- Compare with another technique that can be used to compute $O(h^2)$ implicit approximate solution of diffusion equation in O(N) time: Alternating Direction Implicit Method (ADI)
- From $u_t = Lu = (\partial_{xx} + \partial_{yy})u$ have

$$u^{n+1} = \exp\left(\Delta t L\right) u^n \tag{41}$$

or

$$\exp\left(-\frac{\Delta t}{2}L\right)u^{n+1} = \exp\left(\frac{\Delta t}{2}L\right)u^n \tag{42}$$

• Expanding to $O(\Delta t^2) = O(h^2)$ accuracy, and denoting the usual $O(h^2)$ approximation of L by L^h

$$\left(1 - \frac{\Delta t}{2}L^h\right)u^{n+1} = \left(1 + \frac{\Delta t}{2}L^h\right)u^n$$
(43)

Computational cost

Straightforward to show that last expression can be "factored" as

$$\left(1 - \frac{\Delta t}{2} \partial_{xx}^{h}\right) \left(1 - \frac{\Delta t}{2} \partial_{yy}^{h}\right) u^{n+1} = \left(1 + \frac{\Delta t}{2} \partial_{yy}^{h}\right) \left(1 + \frac{\Delta t}{2} \partial_{xx}^{h}\right) u^{n} + O(h^{3})$$
(44)

where ∂_{xx}^h and ∂_{yy}^h are the usual $O(h^2)$ approximations of ∂_{xx} and ∂_{yy}

- Can then solve (44) using alternating sweeps in x and y directions. Each sweep requires the solution of n tridiagonal systems in n unknowns.
- Total cost is $O(n^2) = O(N)$

Scaling of computational cost for model problem

- Numerical experiments used $n_x-1=n_y-1=n-1=64,128,256,512,1024$, corresponding to discretization levels, $\ell=1,2,3,4$ and 5, with a number of time steps, $n_t^\ell=2^{\ell-1}n_t^1$
- Measured rate, R, of computation is $\kappa T_{\rm CPU}/(n_t n_x n_y)$ where κ is a normalizing constant
- R should be constant for O(N) scaling

n	$R_{ m ADI}$	R_{MG}
64	1.00	1.42
128	1.01	1.44
256	1.09	1.74
512	1.28	1.90
1024	1.15	2.10

ullet MG slowdown for larger N probably due to caching effects

Summary & comments

- Multigrid methods can be used to solve time-dependent finite difference equations in O(N) time (N= number of points in spatial discretization)
- Most useful for PDEs that have "stiffness", and thus generally require implicit treatment to avoid need for unnecessarily small time steps (stability), bad scaling of computational cost as $h \to 0$
- Have illustrated technique for simple model problem: even in this case performance of MG compares favorably to ADI
- However, in contrast to ADI and most other methods, MG readily generalizes to
 - Evolution equations involving general elliptic operators on the RHSs (what we encounter in general relativity, and other sets of geometric PDEs, e.g. Ricci flow)
 - Nonlinear equations
 - Systems of equations

and O(N) performance can also be expected in these cases