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This is work done in answering question 1 of Matt Choptuik’s PHY387 course at UT
Austin.
We are given the Schwarzchild metric:

ds® = —(1 — 250\/[)dt2 + (1 - 2fnw)_ler + r2d0? (1)
We are told to calculate the equations for geodesic motion of a massive test-particle in
teh equatiorial plane. The equatorial plane allows us to assume we are in the plane defined
by 6 = 5. This simplifies the equations a bit, since we know dff = 0. T think you can also
say something about a killing vector along the theta direction, but I don’t know too much
about this yet.
So to solve for the geodesic equations, you calculate the Euler-Lagrange equations:
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for each of the variables (¢, 7,0, ¢) and get the following 3 equations (no € since df = 0):
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And then this behemoth:
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K2 it turns out is just the angular momentum, L. This can be seen in Eq. 6.
K1 squared is the Energy squared. As is noted in Wald’s Eq. 6.3.14, the E (our K1) can
be calculated in terms of r, r’, M, and L:
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Note: kappa in Wald equals 1 since we are dealing with timelike geodesics (the ones ordinary
matter travels on). Null geodesics are for light.



